2025年11月17日
星期一
|
欢迎来到三亚市图书馆•公共文化服务平台
登录
|
注册
|
进入后台
[
APP下载]
[
APP下载]
扫一扫,既下载
全民阅读
职业技能
专家智库
参考咨询
您的位置:
专家智库
>
>
赵阳
作品数:
1
被引量:3
H指数:1
供职机构:
江南计算技术研究所
更多>>
相关领域:
自动化与计算机技术
更多>>
合作作者
吴廖丹
江南计算技术研究所
作品列表
供职机构
相关作者
所获基金
研究领域
题名
作者
机构
关键词
文摘
任意字段
作者
题名
机构
关键词
文摘
任意字段
在结果中检索
文献类型
1篇
中文期刊文章
领域
1篇
自动化与计算...
主题
1篇
频繁项
1篇
频繁项集
1篇
自底向上
1篇
最大频繁项集
1篇
项集
1篇
关联规则
1篇
关联规则挖掘
1篇
FP-TRE...
机构
1篇
江南计算技术...
作者
1篇
吴廖丹
1篇
赵阳
传媒
1篇
计算机技术与...
年份
1篇
2017
共
1
条 记 录,以下是 1-1
全选
清除
导出
排序方式:
相关度排序
被引量排序
时效排序
一种自底向上的最大频繁项集挖掘方法
被引量:3
2017年
频繁项集挖掘是关联规则挖掘中最关键的步骤。最大频繁项集是一种常用的频繁项集简化表示方法。自顶向下的最大频繁项集挖掘方法在最大频繁项集维度远小于频繁项数时往往会产生过多的候选频繁项集。已有的自底向上的最大频繁项集挖掘方法或者需多次遍历数据库,或者需递归生成条件频繁模式树,而预测剪枝策略有进一步提升的空间。为此,提出了基于最小非频繁项集的最大频繁项集挖掘算法(BNFIA),采用基于DFP-tree的存储结构,通过自底向上的方式挖掘出最小非频繁项集,利用最小非频繁项集的性质进行预测剪枝,以缩小搜索空间,再通过边界频繁项集快速挖掘出最大频繁项集。验证实验结果表明,提出算法的性能较同类算法有较为明显的提升。
赵阳
吴廖丹
关键词:
最大频繁项集
关联规则挖掘
FP-TREE
全选
清除
导出
共1页
<
1
>
聚类工具
0
执行
隐藏
清空
用户登录
用户反馈
标题:
*标题长度不超过50
邮箱:
*
反馈意见:
反馈意见字数长度不超过255
验证码:
看不清楚?点击换一张