刘凯伟
- 作品数:2 被引量:5H指数:1
- 供职机构:中国地质大学计算机学院更多>>
- 发文基金:中央高校基本科研业务费专项资金国家自然科学基金更多>>
- 相关领域:自动化与计算机技术更多>>
- 基于流形学习的异常检测算法研究被引量:1
- 2013年
- 化探异常识别是成矿预测的重要依据。化探异常识别本质上是一不均衡数据的分类问题。异常识别过程中面临的主要问题是高维数据的处理问题,流形学习通过非线性降维方法实现维数约简。提出了一种基于流形学习的异常识别算法,通过流形学习进行维数约简,结合AdaCost技术,以改善不平衡数据的分类性能。以某锡铜多金属矿床的数据为研究对象进行仿真实验,实验结果表明该算法能够更准确地圈定区域化探异常,为成矿预测与评价提供了新的解决途径。
- 刘凯伟张冬梅
- 关键词:不均衡数据流形学习代价敏感学习
- 基于正交设计的自适应ε占优MOEA/D算法研究被引量:4
- 2013年
- MOEA/D是一种简单、高效的多目标优化算法,但在更新子问题时,会丢失部分优良个体,降低算法的收敛速度。针对上述不足,提出一种基于正交设计的自适应ε占优算法。新算法改进如下:(1)采用正交试验设计和连续空间量化初始化种群,使初始化群体能均匀分布;(2)设计一种自适应调整松弛变量改进的ε占优机制,并用它来更新Archive种群保存非劣解;(3)将精英策略引入到MOEA/D中,加快收敛速度。实验结果表明新算法较好地改善了MOEA/D算法的收敛性以及非劣解的分布性。
- 周攀张冬梅龚文引李阳刘凯伟
- 关键词:正交实验多目标演化算法