王耀华
- 作品数:1 被引量:16H指数:1
- 供职机构:北京航空航天大学计算机学院更多>>
- 发文基金:国家自然科学基金国家高技术研究发展计划更多>>
- 相关领域:自动化与计算机技术更多>>
- 基于文本语义离散度的自动作文评分关键技术研究被引量:16
- 2016年
- 该文尝试从文本语义离散度的角度去提升自动作文评分的效果,提出了两种文本语义离散度的表示方法,并给出了数学化的计算公式。基于现有的LDA模型、段落向量、词向量等具体方法,提取出四种表征文本语义离散度的实例,应用于自动作文评分。该文从统计学角度将文本语义离散度向量化,从去中心化的角度将文本语义离散度矩阵化,并使用多元线性回归、卷积神经网络和循环神经网络三种方法进行对比实验。实验结果表明,在50篇作文的验证集上,在加入文本语义离散度特征后,预测分数与真实分数之间均方根误差最大降低10.99%,皮尔逊相关系数最高提升2.7倍。该表示方法通用性强,没有语种限制,可以扩展到任何语言。
- 王耀华李舟军何跃鹰巢文涵周建设
- 关键词:作文评分神经网络