为提高短期风电功率的预测精度并对功率预测的不确定性进行量化,提出了基于高斯过程回归(Gaussian Process Regression,GPR)和Bootstrap Aggregation(Bagging)的组合预测方法。针对GPR的不稳定性和计算量大的特点,引入了Bagging和训练数据完全条件独立下的近似方法(Fully Independent Training Conditional Approximation,FITC)。同时,在贝叶斯决策(Bayesian Committee Machine,BCM)的基础上,提出了一种新的权重组合策略。实验表明,基于Bagging和FITC的GPR方法在稳定性、预测精度和训练时间的消耗上都优于传统的GPR方法。在风电功率预测中,改进的GPR可以给出较准确的置信区间,且与极限学习机、最小二乘支持向量机相比较,该方法的预测精度也有明显提高。
为提高短期风电功率预测精度,缩短模型训练时间,提出了一种短期风电功率集成预测方法。根据风速功率曲线和风速频率特征,将风速划分为高、中、低三段,并对每段的风速功率特征进行统计分析。高、低风速段功率波动较大,使用最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)方法可取得较高的预测精度。中风速段风速数据点较多,且风速和功率有明显的物理关系,使用高斯(Gaussian)模型预测。并用风速功率等级表对各段预测的结果进行订正,保证了算法的稳定性。用上海某风电场2014年的历史数据,验证了Gaussian模型以及高、中、低风速段对应的预测算法选取的合理性。与LSSVM预测方法相比较,集成预测方法既提高了预测精度又缩短了预测时间,适合风电场短期功率的实时预测。