张红光 作品数:6 被引量:33 H指数:4 供职机构: 浙江大学 更多>> 发文基金: 国家自然科学基金 更多>> 相关领域: 理学 机械工程 石油与天然气工程 更多>>
汽油辛烷值近红外光谱检测的改进极限学习机建模方法 被引量:8 2017年 为提高近红外光谱法检测汽油辛烷值的精度,该文提出一种汽油辛烷值近红外光谱检测的改进极限学习机(i ELM)新型建模方法。该算法融合了极限学习机算法(ELM)与基于变量投影重要性系数的改进叠加偏最小二乘回归(VIP-SPLS)模型算法,有效解决了ELM模型隐含层输出矩阵维数高和高度共线性的问题。采用该算法对汽油辛烷值的近红外光谱检测数据进行建模,发现改进极限学习机模型的精度比现有的偏最小二乘回归模型和极限学习机模型分别提高20.0%和29.3%,验证了方法的有效性。实验表明,该文方法可用于汽油辛烷值的近红外光谱检测,检测精度良好。 胡碧霞 张红光 卢建刚 鄢悦 李雪园 韩金厚 刘彤 陈金水 孙优贤关键词:汽油辛烷值 近红外光谱 极限学习机 偏最小二乘 基于近红外光谱和最小二乘支持向量机的聚丙烯酰胺类型鉴别 被引量:10 2014年 提出了一种基于近红外光谱分析技术和最小二乘支持向量机的鉴别方法,能够快速、无损鉴别聚丙烯酰胺的三种类型。获取非离子,阴离子和阳离子等三种类型的聚丙烯酰胺样本的近红外漫反射光谱,用主成分分析方法对样本光谱数据进行降维,并提取主成分。基于前三个主成分对三种类型的聚丙烯酰胺样本进行聚类分析,并将主成分作为最小二乘支持向量机的输入。通过基于网格搜索的交叉验证方式优化最小二乘支持向量机的参数和作为其输入的主成分个数。每种类型聚丙烯酰胺各采集60个样本,共采集180个样本,每种类型样本随机选取45个样本,共135样本作为训练样本集,剩余45个样本作为测试集。为了验证该方法能否鉴别掺假样本,制备了掺入不同比例非离子聚丙烯酰胺的5个阴离子和5个阳离子聚丙烯酰胺样本。采用基于训练样本集交叉验证预测误差的F统计显著性检验方法来确定样本的鉴别结果误差阈值。结果表明,预测测试集时,准确率为100%。预测10个混和样本时,所有混合样本都被准确识别出。说明该方法能快速无损鉴别不同类型的聚丙烯酰胺并且具有掺假鉴别能力,为聚丙烯酰胺类型的快速鉴别提供了一种新方法。 张红光 杨秦敏 卢建刚关键词:近红外光谱 主成分分析 最小二乘支持向量机 聚丙烯酰胺 近红外光谱定量分析的改进ELM算法 被引量:3 2016年 极限学习机理论(extreme learning machine,ELM)作为一种新的化学计量学方法,在近红外光谱定量分析中的应用研究,已引起学术界的高度重视。然而,由于光谱数据维数较高,建立ELM模型时需要大量的隐节点,导致隐含层输出矩阵维数高且存在高度共线性,用现有的Moore-Penrose广义逆算法求取隐含层输出矩阵与待测性质间的回归模型往往会存在病态问题。基于ELM建立光谱波长变量与性质之间的回归模型,提出以ELM模型隐含层输出矩阵作为新的变量,采用作者最新提出的基于变量投影重要性的改进叠加PLS算法(stacked partial least squares regression algorithm based on variable importance in the projection,VIP-SPLS),建立新变量与待测性质间的回归模型。VIP-SPLS算法充分利用了每个隐节点的输出信息,能有效解决高维共线性问题,同时具有模型集成的优点,从而改进了ELM模型的性能。将提出的改进ELM算法(improved ELM,iELM)应用于标准近红外光谱数据集,结果表明iELM模型的精度相对于现有的PLS模型和ELM模型分别显著提升了29.06%和27.47%。 张红光 卢建刚关键词:近红外光谱 光谱定量分析 基于光谱信息散度的近红外光谱局部偏最小二乘建模方法 被引量:9 2017年 常见的近红外光谱分析技术,一般将欧式距离作为相似性判据,但是在很多情况下并不能真实体现样本间的相似性;同时,线性回归模型无法克服校正样本集光谱数据中非线性以及样本差异大而导致的精度降低问题。针对上述问题,本文首次将光谱信息散度引入到局部建模算法中,以未知样本光谱与校正样本光谱间的光谱信息散度作为样本相似性判据,选取一定数量与待测样本最相似的校正样本组成局部校正子集,建立局部偏最小二乘模型。为了验证算法的有效性,将现有的全局建模算法、基于样本光谱间欧式距离的局部建模算法与本文提出的基于光谱信息散度的局部建模算法应用于猪肉近红外光谱标准数据集。实验结果表明:本文新方法的预测均方根误差(RMSEP)分别比现有的两种算法降低了22.8%与48.7%,克服猪肉近红外光谱的非线性和差异性,在近红外光谱定量分析领域具有良好的应用前景。 鄢悦 张红光 卢建刚 施英姿 陈金水关键词:近红外光谱 偏最小二乘 净信号的局部建模算法及其在近红外光谱分析中的应用 被引量:4 2016年 提出了一种基于净信号分析的局部建模算法,以克服光谱定量分析中样本间差异性过大和样本待测性质与光谱之间存在非线性等问题。首先利用净信号分析方法得到校正样本和待测样本的净信号,然后用待测样本净信号和校正样本净信号之间的欧式距离作为样本相似性判据,选取一定数量的与待测样本最相似的校正样本组成局部校正子集,建立局部PLS回归模型。针对一组猪肉近红外光谱数据集的实验结果表明,该方法的预测精度显著优于全局建模方法和基于光谱欧式距离的局部建模方法。 张红光 卢建刚关键词:光谱定量分析 偏最小二乘 近红外光谱 汽油辛烷值近红外光谱检测的改进极限学习机新型建模方法 辛烷值是汽油的一个关键品质参数,也是汽油调和生产过程中需要测量和控制的一个重要的参数,然而常规的检测手段存在检测时间长、测试成本过高等缺点,无法满足实时检测和反馈控制的需求。近红外光谱是在线检测汽油辛烷值的有效手段,在实... 胡碧霞 张红光 卢建刚 鄢悦 李雪园 韩金厚 刘彤 陈金水 孙优贤关键词:汽油辛烷值 极限学习机 建模方法 文献传递