2025年11月20日
星期四
|
欢迎来到三亚市图书馆•公共文化服务平台
登录
|
注册
|
进入后台
[
APP下载]
[
APP下载]
扫一扫,既下载
全民阅读
职业技能
专家智库
参考咨询
您的位置:
专家智库
>
>
邹新民
作品数:
2
被引量:0
H指数:0
供职机构:
监利中学
更多>>
相关领域:
理学
更多>>
合作作者
陈士龙
长江大学信息与数学学院
呙林兵
长江大学信息与数学学院
作品列表
供职机构
相关作者
所获基金
研究领域
题名
作者
机构
关键词
文摘
任意字段
作者
题名
机构
关键词
文摘
任意字段
在结果中检索
文献类型
2篇
中文期刊文章
领域
2篇
理学
主题
1篇
对称矩阵
1篇
实对称
1篇
实对称矩阵
1篇
平面束
1篇
主子式
1篇
内积
1篇
矩阵
1篇
可逆矩阵
1篇
极值
机构
2篇
长江大学
2篇
监利中学
作者
2篇
邹新民
1篇
呙林兵
1篇
陈士龙
传媒
1篇
长江大学学报...
1篇
赤峰学院学报...
年份
2篇
2016
共
2
条 记 录,以下是 1-2
全选
清除
导出
排序方式:
相关度排序
被引量排序
时效排序
实对称矩阵的2种特殊分解及其应用
2016年
对称矩阵有很多特殊的性质,其分解形式也有很多种,但较少涉及实对称矩阵与可逆对称矩阵尤其是与矩阵的主子式之间的关系。根据对称矩阵的特点给出了实对称矩阵A的第一种特殊的分解形式A=Q^TDQ(Q为秩为r的r×n阶矩阵,D是r阶的可逆对称矩阵),再利用这种分解形式得到了关于秩为r的n阶实对称矩阵的任一r阶子式的一个重要结论,从而导出了实对称矩阵与主子式相关的另一种重要分解形式A=Q^TAIQ AI(为A的一个秩为r的主子式,Q为秩为r的r×n阶矩阵),并给出了这2种分解式在矩阵中的一些应用,对实对称矩阵研究有一定的指导意义。
呙林兵
邹新民
关键词:
对称矩阵
可逆矩阵
主子式
空间点到直线距离的新算法
2016年
运用极值原理,给出了直线一般方程条件下空间点到直线的距离公式.
陈士龙
邹新民
关键词:
平面束
内积
极值
全选
清除
导出
共1页
<
1
>
聚类工具
0
执行
隐藏
清空
用户登录
用户反馈
标题:
*标题长度不超过50
邮箱:
*
反馈意见:
反馈意见字数长度不超过255
验证码:
看不清楚?点击换一张