基于分部求和(Summation By Parts)方法和同时逼近项(Simultaneous Approximation Terms)技术建立的有限差分方法,具有更高的精度和稳定性。同时在介质几何不连续、参数突变条件具有较大的优势。国内对SBP-SAT方法的相关研究目前较少,论文对该方法的研究背景,方法发展过程进行了介绍并基于SBP-SAT方法和弹性波动理论,结合初边值条件,推导出曲线网格条件下的弹性波动SBP-SAT离散方程。最后,通过数值模拟实现地震波传播过程,介绍该方法在地震数值模拟领域中的应用价值和前景。
波动方程系数矩阵对称化是整合不同类别波动方程、降低波传播模拟难度的有效方法,目前已成功应用于声波方程、各向同性与各向异性介质弹性波动方程。该研究将推导出双项介质波动方程的系数矩阵对称式;随后,引入多轴完全匹配层,采用迎风格式分部求和-一致逼近项(summation by parts-simultaneous approximation terms,SBP-SAT)有限差分方法离散波动方程,并通过能量法进行稳定性评估。通过数值仿真,表明所提出的离散框架具有整合度高,稳定性好和拓展性强等特点。此外,该方法可以稳定模拟曲线域中的波传播并降低其实现成本,表明了波动方程系数矩阵对称化方法及其离散框架在波传播模拟领域具有广泛的应用前景。