在大数据时代,海量的互联网信息飞速增长,人们对信息获取的精准度与效率提出了更高的要求。随着企业信息化和装备管理现代化的不断推进,对海量企业装备信息进行有效的提炼、管理与利用,对于提升企业装备知识的应用价值以及企业资源的利用效率具有重要意义。本研究提出了一套融合大语言模型自然语言处理能力的系统,可智能理解用户查询并提供精准的装备信息。通过采用P-Tuning v2方法对大语言模型进行微调,大幅提升了其在企业装备领域对关键词的识别和提取能力。同时,借助企业装备知识图谱作为本地知识库,为模型提供行业领域知识,使其能够将相关信息作为问题的上下文进行学习。基于此,还设计了提示工程来引导模型生成更准确的回复,并对结果进行了效果评估。实验结果表明,相较于直接使用大语言模型,该基于知识图谱增强的大语言模型在企业装备领域的智能化回复准确率更高,为企业装备问答系统的建设提供了有力支持。In the era of big data, the volume of Internet information is growing at an astonishing rate, and people have put forward higher requirements for the accuracy and efficiency of information acquisition. With the continuous advancement of enterprise informatization and modernization of equipment management, effectively extracting, managing and utilizing massive enterprise equipment information is of great significance for enhancing the application value of enterprise equipment knowledge and improving the efficiency of enterprise resource utilization. This study proposes a system that integrates the natural language processing capabilities of large language models, which can intelligently understand user queries and provide precise equipment information. By using the P-Tuning v2 method to fine-tune the large language model, its ability to recognize and extract keywords in the field of enterprise equipment has been significa