A modified reduced-order method for RC networks which takes a division-and-conquest strategy is presented.The whole network is partitioned into a set of sub-networks at first,then each of them is reduced by Krylov subspace techniques,and finally all the reduced sub-networks are incorporated together.With some accuracy,this method can reduce the number of both nodes and components of the circuit comparing to the traditional methods which usually only offer a reduced net with less nodes.This can markedly accelerate the sparse-matrix-based simulators whose performance is dominated by the entity of the matrix or the number of components of the circuits.
A simple and successful method for the stability enhancement of integrated circuits is presented. When the process parameters, temperature, and supply voltage are changed, according to the simulation results, this method yields a standard deviation of the transconductance of MOSFETs that is 41.4% less than in the uncompensated case. This method can be used in CMOS LC oscillator design.