在全球气候变暖加剧极端降水的背景下,热带岛屿地区的精准降水预报对防灾减灾和可持续发展具有关键意义。海南岛作为典型热带季风区,其强降水过程受多重天气系统影响,但现有研究多聚焦于中高纬度地区,针对热带岛屿云微物理机制的认知仍存在显著缺口。本研究基于WRF V4.2模式,选取12类典型强降水事件(含台风、季风和对流系统),系统评估Kessler、Lin、WSM3/5/6、Ferrier和Thompson共7种云微物理方案在海南岛的适用性,结合地面观测、CMPAS融合降水产品和GSMaP遥感数据,通过相关系数(R)、均方根误差(RMSE)和Kling-Gupta效率系数(KGE)等多维度指标验证模拟性能。研究发现:(1) 方案表现呈现显著时空分异性,Ferrier方案在秋季降水模拟中相关系数最高(R = 0.77),而Thompson方案在误差控制(RMSE = 1.67 mm/h)和台风降水峰值捕捉(20 mm/h)方面最优;(2) Thompson (MP8)和WSM6方案(MP6)在降水过程模拟中展现出较高的综合可靠性;(3) 简单暖云方案Kessler在3月季风转换前期(R = 0.53)和9月残余台风降水(R = 0.63)中表现突出,揭示了热带降水暖云主导机制与复杂冰相参数化的适应性矛盾;(4) 提出季节–天气型动态方案配置策略:季风转换前期(3~4月)采用Kessler方案(MP1),主汛期(5~9月)优选Thompson方案(MP8),台风中后期(10~11月)切换至WSM3方案(MP3)。In the context of global warming exacerbating extreme precipitation, accurate precipitation forecasting in tropical island regions is crucial for disaster prevention, mitigation, and sustainable development. As a representative tropical monsoon region, Hainan Island experiences heavy precipitation influenced by multiple weather systems. However, existing studies predominantly focus on mid- and high-latitude regions, leaving significant gaps in the understanding of cloud microphysical mechanisms over tropical islands. This study employs the WRF V4.2 model to evaluate the applicability of seven cloud mi
数值天气预报的准确性极大地依赖于模式初始化场的质量及其平衡收敛过程,而这一过程在地形复杂、海陆交互显著的热带岛屿区域显得尤为关键。本研究基于WRF模式针对海南岛区域开展了不同分辨率初始场对模式平衡收敛特征的系统研究。采用ERA5 (0.25˚)和ERA-Interim (0.75˚)再分析资料作为初始场,通过设计短期和长期平行对比试验,分析了2米温度(T2)、2米比湿(Q2)及10米风场(U10、V10)等近地面要素的平衡收敛特征。研究发现,高分辨率初始场显著提升了模式的平衡收敛效率,ERA5驱动的模拟在长期积分中温度场平均收敛时间较ERA-Interim缩短2.7小时(17.4 vs 20.1小时),比湿场缩短3.3小时(18.1 vs 21.4小时),风场缩短3.0-3.5小时(U10:20.2 vs 23.2小时,V10:21.1 vs 24.6小时)。短期模拟结果表明,不同物理量具有显著的时间依赖特征:温度场的平均收敛时间为2.8小时,比湿场为3.3小时,风场则需要3.7~4.0小时。特别是在18时起报的预报中,ERA5温度场的动态时间规整(Dynamic Time Warping, DTW)相关系数达到最高值0.93,而ERA-Interim降至0.87,表明ERA5在处理日落前后的温度变化方面具有独特优势。基于研究结果,ERA5在各物理量的预报中均表现出更快的收敛速度和更高的预报准确性,这对提升热带海岛地区数值预报水平具有重要的参考价值。The accuracy of numerical weather prediction heavily depends on the quality of model initialization fields and their spin-up process, which is particularly crucial in tropical island regions characterized by complex terrain and significant land-sea interactions. This study systematically investigated the impact of initial fields with different resolutions on model spin-up characteristics over Hainan Island using the WRF model. Using ERA5 (0.25˚) and ERA-Interim (0.75˚) reanalysis data as initial fields, we analyzed the spin-up characteristics of near-surface variables including 2-meter temperature (T