为了全面提高废口罩纤维(Waste Mask Fiber, WMF)改性沥青的高低温性能,将其与SBR改性剂共同制备WMF-SBR复合改性沥青,基于MSCR流变性能试验,对未老化、FTROT短期老化和PAV长期老化三种状态下的复合改性沥青,测试分析其蠕变恢复率R、不可恢复蠕变柔量Jnr、应力敏感性Jnrdiff、Rdiff等指标的变化规律。结果表明,其软化点较基质沥青提高了14.6%,较WMF改性沥青降低了5%,延度较WMF改性沥青增加了380%;在0.1 kPa、3.2 kPa应力作用下,WMF-SBR复合改性沥青的R值、Rdiff值、Jnr值、Jnrdiff值随老化程度的增加分别呈增大、减小、减小、减小的趋势变化;与基质沥青、SBR改性沥青相比,WMF-SBR复合改性沥青在相同老化阶段和应力水平条件下,R、Rdiff指标均最大,Jnr、Jnrdiff指标均最小。WMF-SBR复合改性沥青显著提高了WMF改性沥青的低温塑性;相比SBR改性沥青,其高温抗车辙变形稳定性更好,弹性变形恢复能力更强,应力敏感性更小,老化后性能更稳定、更耐久。In order to comprehensively improve the high and low temperature performance of waste mask fiber (Waste Mask Fiber, WMF) modified asphalt, the WMF-SBR composite modified asphalt was prepared with SBR modifying agent. Based on the MSCR rheological performance test, the changes in creep recovery rate R, unrecoverable creep compliance Jnr, stress sensitivity Jnrdiff, and Rdiff of composite modified asphalt under three states of unaged, FTROT short-term aging, and PAV long-term aging were tested and analyzed. The results show that, its softening point is 14.6% higher than the matrix asphalt, is 5% lower than the WMF modified bitumen. The extension is 380% higher than that of WMF modified asphalt;under the action of the 0.1 kPa, 3.2 kPa stress, the R value, Rdiff value, Jnr value and Jnrdiff value of WMF-SBR composite modified asphalt respectively increase, decrease, decrease and decrease with the increase of aging degree;compared with matrix asphalt and SBR
随着科技进步和人们生活水平的提高,电池作为重要的能源存储设备,在移动电子设备、电动汽车和可再生能源存储等领域得到广泛应用。然而,电池的使用寿命有限,大量废旧电池的产生给环境带来了严重威胁。废弃电池中含有重金属和有害化学物质,若处理不当,不仅会对生态系统造成长期污染,还会威胁人类健康,并且浪费电池中含有的锂、钴、镍等稀缺金属资源。因此,从环境保护和资源利用的角度考虑,如何有效处理并回收利用废弃电池,对于实现资源循环和可持续发展具有重要意义。为此,本文分析了电池的主要类型、结构及其危害,总结了当前主要电池类型的回收技术,详细介绍了四种主要废旧电池回收利用的新技术,并分析了不同回收工艺的原理、流程与效率。我们发现金属的浸出与提取在整个回收过程中尤为关键。最后,本文总结并展望了未来回收工艺的发展趋势与对策。With the advancement of science and technology and the improvement of people’s living standards, batteries, as an important energy storage device, have been widely used in the fields of mobile electronic devices, electric vehicles and renewable energy storage. However, the service life of batteries is limited, and the generation of a large number of waste batteries poses a serious threat to the environment. Waste batteries contain heavy metals and harmful chemicals, which, if not properly handled, will not only cause long-term pollution to the ecosystem, but also threaten human health, and waste rare metal resources such as lithium, cobalt and nickel contained in batteries. Therefore, from the perspective of environmental protection and resource utilization, how to effectively treat and recycle waste batteries is of great significance for the realization of resource recycling and sustainable development. To this end, this paper analyzes the main types, structures and hazards of batteries, summarizes t