The electro-deoxidation of TiO2 was investigated in molten CaCl2.Back electromotive force measurements,constant voltage electrolytic experiments,contrast experiments of different cathodes,and cyclic voltammograms were carried out for solving the puzzle of reduction mechanism.The results showed that the reduction process proceeded step by step.TiO2 was first reduced to Ti3O5 or Ti2O3,and then further reduced to Ti3O,Ti2O,TiO and Ti.In addition,direct electrochemical reduction of titanium dioxide was the primary cathodic reaction;meanwhile,some calciothermic reduction reactions also happened at the cathode.Cyclic voltammograms of solid titanium dioxide and molybdenum wire in molten salts with different compositions were also studied.
Aluminum was electrodeposited with constant current on AZ31 magnesium alloy pretreated under optimized conditions from trimethyl-phenyl-ammonium chloride and anhydrous aluminum chloride (TMPAC-AlCl3) quaternary ammonium room temperature ionic liquids with benzene as a co-solvent. The corrosion resistance of the as-deposited Al layers was evaluated in 3.5% NaCl solution by the electrochemical technologies. The Al depositions were characterized by scanning electron microscopy equipped with energy dispersion X-ray. The results show that the microstructures of the Al depositions have spherical equiaxed grains obtained at a high current density, and bulk grains at a low current density. The Al deposition obtained at 12.3 mA/cm2 has a smooth and compact surface. The electrochemical measurements indicate that the thicker Al deposition can more effectively protect the Mg substrate. The Al deposition with bulk grains hardly protects the AZ31 Mg substrate from corrosion owing to its porosity.