陈振华
- 作品数:1 被引量:6H指数:1
- 供职机构:东北大学信息科学与工程学院更多>>
- 发文基金:中央高校基本科研业务费专项资金教育部“新世纪优秀人才支持计划”国家教育部博士点基金更多>>
- 相关领域:自动化与计算机技术更多>>
- 大尺度IP骨干网络流量矩阵估计方法研究被引量:6
- 2011年
- 流量矩阵估计是当前的热点研究问题,它被网络操作员用来进行负载均衡、路由最优化、流量侦测、网络规划等等.然而,流量矩阵估计本身固有的高度病态特性,使得精确地估计流量矩阵成为具有挑战性的研究课题.本文研究大尺度IP骨干网络的流量矩阵估计;基于RBF(Radial Basis Function)神经网络,提出一种新的估计方法TMRI(Traffic Matrix Recurrence Inference).TMRI利用RBF神经网络强大的建模功能来建模流量矩阵估计问题,将这一问题的病态特性克服于RBF神经网络的训练过程中,从而避免复杂的数学建模过程.并在所建立的估计模型基础上,将流量矩阵估计描述为约束条件下的最优化过程,通过迭代寻优,TMRI能进一步克服这一问题的病态特性.仿真结果表明TMRI能精确地估计流量矩阵和追踪它的动态变化,与以前的方法相比,具有更强的抗噪声性能和显著的性能改善.
- 蒋定德王兴伟郭磊许争争陈振华
- 关键词:流量矩阵估计RBF神经网络