In this paper we unify the system of functional equations defining multi-quadratic mappings to a single equation, find out the general solution of it and prove its generalized Hyers-Ulam stability.
Let Nn(R)be the algebra consisting of all strictly upper triangular n × n matrices over a commutative ring R with the identity.An R-bilinear map φ :Nn(R)×Nn(R)→ Nn(R)is called a biderivation if it is a derivation with respect to both arguments.In this paper,we define the notions of central biderivation and extremal biderivation of Nn(R),and prove that any biderivation of Nn(R)can be decomposed as a sum of an inner biderivation,central biderivation and extremal biderivation for n ≥ 5.