High-speed light source is realized for decoy-state quantum key distribution (QKD) at telecom wavelength of 1.55 ttm. By implementing two different electrical pulses together and triggering with 100 MHz pseudo- random number to drive the laser diode, the signal-state and the decoy-state pulses are prepared with identical pulse duration of 25 ps and similar spectral characteristics, avoiding the eavesdropper's attack by temporal and spectral analysis. The intensity fluctuation of the light source is quantified to satisfy the practical decoy-state QKD with random intensity error. The characteristics of the light source are analyzed with a high-speed single-photon detector.
Single gold nanoshell with mutilpolar plasmon resonances is proposed to enhance two-photon fluorescence efficiently.The single emitter single nanoshell configuration is studied systematically by employing the finite-difference time-domain method.The emitter located inside or outside the nanoshell at various positions leads to a significantly different enhancement effect.The fluorescent emitter placed outside the nanoshell can achieve large fluorescence intensity given that both the position and orientation of the emission dipole are optimally controlled.In contrast,for the case of the emitter placed inside the nanoshell,it can experience substantial two-photon fluorescence enhancement without strict requirements upon the position and dipole orientations.Metallic nanoshell encapsulating many fluorescent emitters should be a promising nanocomposite configuration for bright two-photon fluorescence label.The results provide a comprehensive understanding about the plasmonic-enhanced two-photon fluorescence behaviors,and the nanocomposite configuration has great potential for optical detecting,imaging and sensing in biological applications.
We theoretically propose blue-detuned optical trapping for neutral atoms via strong near-field interfacing in a plasmonic nanohole array. The optical field at resonance forms a nanoscale-trap potential with an FWHM of 200 nm and about ~370 nm away from the nanohole; thus, a stable 3 D atom trapping independent of the surface potential is demonstrated. The effective trap depth is more than 1 m K when the optical power of trapping light is only about 0.5 m W, while the atom scattering rate is merely about 3.31 s^(-1), and the trap lifetime is about 800 s.This compact plasmonic structure provides high uniformity of trap depths and a two-layer array of atom nanotraps, which should have important applications in the manipulation of cold atoms and collective resonance fluorescence.
The Boltzmann constant kB is a fundamental physical constant in thermodynamics. The present CODATA recommended value of kB is 1.3806488(13) × 10^-23 J/K (relative uncertainty 0.91 ppm), which is mainly determined by acoustic methods. Doppler broadening thermometry (DBT) is an optical method which determines kBT by measuring the Doppler width of an atomic or molecular transition. The methodology and problems in DBT are reviewed, and DBT measurement using the sensitive cavity ring-down spectroscopy (CRDS) is proposed. Preliminary measurements indicate that CRDS- based DBT measurement can potentially reach an accuracy at the 1 ppm level.