A new approach was put torward for estimating the polarization mode dispersion(PMD)induced power degradation to do a performance analysis of millimeter-wave(mm-wave)generation systems based on optical self-heterodyne technique.Unlike those established ones,this new approach was proposed from another perspective.Considering the optical cartier which is distributed over optical fiber as a stochastic process.The autocorrelation function of the stochastic process was calculated,and then the power degradation could be estimated with Parseval's theorem.This approach to estimate PMD-induced power degradation in normal signal mode fiber(SMF)was used.The results of the approach are well approximates to those established ones,which proves that the theoretical approach is correct.At last,schematics of the power degradation of a 60 GHz signal due to PMD with three different fiber lengths were given to provide intuitive assistance for readers.
A novel approach to generate and distribute ultra-wideband (UWB) pulses in optical domain is investigated. In this proposed scheme, a dual-electrode Mach-Zehnder modulator (DE-MZM) is biased at its quadrature point so as to realize the linear response. Then the intensity of output optical field can be assumed to the subtraction of two input Gaussian pulses. If the input Gaussian pulses are with the same sharp parameters but different time delays, a quasi-monocycle-waveform UWB signal can be generated. If the input Gaussian pulses are with different amplitudes and full-width at half-maximum (FWHM), a quasi-doublet-waveform UWB signal can be generated. A transmission of the UWB signals through a 25-km single mode fiber is carried out successfully. The results in both temporal and frequency domains are also presented.