Climate drift in preindustrial control (PICTL) simulations can lead to spurious climate trends and large uncertainties in historical and future climate simulations in coupled models. This study examined the long- term behaviors and stabilities of the PICTL simulations in the two versions of FGOALS2 (the Flexible Global Ocean-Atmosphere-Land System model Version 2), which have been submitted to the Coupled Model Inter- comparison Project Phase 5 (CMIP5). As verified by examining time series of thermal fields and their linear trends, the PICTL simulations showed stable long-term integration behaviors and no obvious climate drift [the magnitudes of linear trends of SST were both less than 0.04℃ (100 yr)-1] over multiple centuries. The changed SSTs in a century (that corresponded to the linear trends) were less than the standard deviations of annual mean values, which implied the internal variability was not affected. These trend values were less than 10~0 of those of global averaged SST from observations and historical runs during the periods of slow and rapid warming. Such stable long-term integration behaviors reduced the uncertainty of the estimation of global warming rates in the historical and future climate projections in the two versions of FGOALS2. Compared with the trends in the Northern Hemisphere, larger trends existed in the SST and sea ice extents at the middle to high latitudes of the Southern Hemisphere (SH). To estimate the historical and future climate trends in the SH or at some specific regions in FGOALS2, corrections needed to be carried out. The similar long-term behaviors in the two versions of FGOALS2 may be attributed to proper physical processes in the ocean model.
The authors investigate the relationship between bias in simulated sea surface temperature (SST) in the equatorial eastern Pacific cold tongue during the boreal spring as simulated by an oceanic general circulation model (OGCM) and minimal wind mixing (MWM) at the surface. The cold bias of simulated SST is the greatest during the boreal spring, at approximately 3℃. A sensi- tivity experiment reducing MWM by one order of magnitude greatly alleviates cold biases, especially in March-April. The decrease in bias is primarily due to weakened vertical mixing, which preserves heat in the uppermost layer and results in warmer simulated SST. The reduction in vertical mixing also leads to a weak westward current in the upper layer, which further contributes to SST warming. These findings imply that there are large uncertainties about simple model parameters such as MWM at the oceanic surface.
We describe the long-term stability and mean climatology of oceanic circulations simulated by version 2 of the Flexible Global Ocean-Atmosphere-Land System model (FGOALS-s2). Driven by pre-industrial forcing, the integration of FGOALS-s2 was found to have remained stable, with no obvious climate drift over 600 model years. The linear trends of sea SST and sea surface salinity (SSS) were -0.04℃ (100 yr)-1 and 0.01 psu (100 yr)-1, respectively. The simulations of oceanic temperatures, wind-driven circulation and thermohaline circulation in FGOALS-s2 were found to be comparable with observations, and have been substantially improved over previous FGOALS-s versions (1.0 and 1.1). However, significant SST biases (exceeding 3℃) were found around strong western boundary currents, in the East China Sea, the Sea of Japan and the Barents Sea. Along the eastern coasts in the Pacific and Atlantic Ocean, a warm bias (〉3℃) was mainly due to overestimation of net surface shortwave radiation and weak oceanic upwelling. The difference of SST biases in the North Atlantic and Pacific was partly due to the errors of meridional heat transport. For SSS, biases exceeding 1.5 psu were located in the Arctic Ocean and around the Gulf Stream. In the tropics, freshwater biases dominated and were mainly caused by the excess of precipitation. Regarding the vertical dimension, the maximal biases of temperature and salinity were located north of 65°N at depths of greater than 600 m, and their values exceeded 4℃ and 2 psu, respectively.
The present study examines simulated oceanic climatology in the Flexible Global Ocean-Atmosphere- Land System model, Grid-point Version 2 (FGOALS-g2) forced by historical external forcing data. The oceanic temperatures and circulations in FGOALS-g2 were found to be comparable to those observed, and substantially improved compared to those simulated by the previous version, FGOALS-gl.0. Compared with simulations by FGOALS-gl.0, the shallow mixed layer depths were better captured in the eastern Atlantic and Pacific Ocean in FGOALS-g2. In the high latitudes of the Northern Hemisphere, the cold biases of SST were about 1℃-5℃ smaller in FGOALS-g2. The associated sea ice distributions and their seasonal cycles were more realistic in FGOALS-g2. The pattern of Atlantic Meridional Overturning Circulation (AMOC) was better simulated in FGOALS-g2, although its magnitude was larger than that found in observed data. The simulated Antarctic Circumpolar Current (ACC) transport was about 140 Sv through the Drake Passage, which is close to that observed. Moreover, Antarctic Intermediate Water (AAIW) was better captured in FGOALS-g2. However, large SST cold biases (〉3℃) were still found to exist around major western boundary currents and in the Barents Sea, which can be explained by excessively strong oceanic cold advection and unresolved processes owing to the coarse resolution. In the Indo-Pacific warm pool, the cold biases were partly related to the excessive loss of heat from the ocean. Along the eastern coast in the Atlantic and Pacific Oceans, the warm biases were due to overestimation of shortwave radiation. In the Indian Ocean and Southern Ocean, the surface fresh biases were mainly due to the biases of precipitation. In the tropical Pacific Ocean, the surface fresh biases (〉2 psu) were mainly caused by excessive precipitation and oceanic advection. In the Indo-Pacific Ocean, fresh biases were also found to dominate in the upper 1000 m, except in the northeastern Indian Ocean. There were