For eventually providing terahertz science with compact and convenient devices,terahertz (1~10THz) quantum-well photodetectors and quantum-cascade lasers are investigated.The design and projected detector performance are presented together with experimental results for several test devices,all working at photon energies below and around optical phonons.Background limited infrared performance (BLIP) operations are observed for all samples (three in total),designed for different wavelengths.BLIP temperatures of 17,13,and 12K are achieved for peak detection frequencies of 9.7THz(31μm),5.4THz(56μm),and 3.2THz(93μm),respectively.A set of THz quantum-cascade lasers with identical device parameters except for doping concentration is studied.The δ-doping density for each period varies from 3.2×1010 to 4.8×1010cm-2.We observe that the lasing threshold current density increases monotonically with doping concentration.Moreover,the measurements for devices with different cavity lengths provide evidence that the free carrier absorption causes the waveguide loss also to increase monotonically.Interestingly the observed maximum lasing temperature is best at a doping density of 3.6×1010cm-2.
Liu H CLuo HBan DWaichter MSong C YWasilewski Z RBuchanan MAers G CSpringThorpe A JCao J CFeng S LWilliams B SHu Q
We study the influence of ionized impurity scattering on the electron transport in resonant-phonon-assisted terahertz (THz) quantum-cascade lasers (QCLs). We treat the ionized impurity scattering rates within the single subband static screening approximation. We find that the ionized impurity scattering supplies an additional current channel across the device,and affects the electrondistribution in different subbands. We conclude that the ionized impurity scattering should be taken into account in the study of the transport properties of resonant-phonon-assisted THz QCLs.