您的位置: 专家智库 > >

国家自然科学基金(11041005)

作品数:2 被引量:6H指数:1
相关作者:王建平更多>>
相关机构:绍兴文理学院更多>>
发文基金:国家自然科学基金更多>>
相关领域:理学更多>>

文献类型

  • 2篇中文期刊文章

领域

  • 2篇理学

主题

  • 1篇亚纯函数
  • 1篇亚纯函数族
  • 1篇英文
  • 1篇正规性
  • 1篇正规族
  • 1篇值分布
  • 1篇函数
  • 1篇函数族
  • 1篇RESTRI...
  • 1篇SCH
  • 1篇CONSTA...
  • 1篇NORM
  • 1篇ISOMET...
  • 1篇RECOVE...

机构

  • 1篇绍兴文理学院

作者

  • 1篇王建平

传媒

  • 1篇Scienc...
  • 1篇绍兴文理学院...

年份

  • 2篇2013
2 条 记 录,以下是 1-2
排序方式:
亚纯函数族的正规性(英文)
2013年
建立了一个与著名的海曼问题相关的亚纯函数族的正规定则,改进了庞学成和Zalcman的一个结果.
王建平
关键词:亚纯函数正规族值分布
The bounds of restricted isometry constants for low rank matrices recovery被引量:6
2013年
This paper discusses conditions under which the solution of linear system with minimal Schatten-p norm, 0 〈 p ≤ 1, is also the lowest-rank solution of this linear system. To study this problem, an important tool is the restricted isometry constant (RIC). Some papers provided the upper bounds of RIC to guarantee that the nuclear-norm minimization stably recovers a low-rank matrix. For example, Fazel improved the upper bounds to δ4Ar 〈 0.558 and δ3rA 〈 0.4721, respectively. Recently, the upper bounds of RIC can be improved to δ2rA 〈 0.307. In fact, by using some methods, the upper bounds of RIC can be improved to δ2tA 〈 0.4931 and δrA 〈 0.309. In this paper, we focus on the lower bounds of RIC, we show that there exists linear maps A with δ2rA 〉1√2 or δrA 〉 1/3 for which nuclear norm recovery fail on some matrix with rank at most r. These results indicate that there is only a little limited room for improving the upper bounds for δ2rA and δrA.Furthermore, we also discuss the upper bound of restricted isometry constant associated with linear maps A for Schatten p (0 〈 p 〈 1) quasi norm minimization problem.
WANG HuiMinLI Song
共1页<1>
聚类工具0