Quantitative investigation on mechanical characteristics of cardiac myocytes has important physiological significance. Based on elastic substrate technique, this paper develops a set of algorithms for high-efficiency cellular traction recovery. By applying a gradient-based digital image correlation method to track randomly distributed fluorescence microbeads on the deformed substrate induced by single cardiac myocyte, high-resolution substrate displacement field can readily be obtained. By using a numerical algorithm based on the integral Boussinesq solution, cell-substrate tractions are reconstructed in a stable and reliable manner. Finally, spatiotemporal dynamics of a single cardiac myocyte is investigated as it adheres to a polyacrylamide elastic substrate.