您的位置: 专家智库 > >

国家自然科学基金(11025107)

作品数:3 被引量:4H指数:1
发文基金:国家自然科学基金更多>>
相关领域:理学电气工程更多>>

文献类型

  • 2篇中文期刊文章

领域

  • 2篇理学
  • 1篇电气工程

主题

  • 1篇NO
  • 1篇POSITI...
  • 1篇CHERN
  • 1篇CONJEC...
  • 1篇CURREN...
  • 1篇HE
  • 1篇MAXIMA...
  • 1篇N-
  • 1篇UNIFOR...
  • 1篇SMOOTH...
  • 1篇EXISTE...

传媒

  • 1篇Acta M...
  • 1篇Scienc...

年份

  • 1篇2018
  • 1篇2012
3 条 记 录,以下是 1-2
排序方式:
Smoothing positive currents and the existence of Khler-Einstein metrics被引量:1
2012年
In this paper,we prove a general existence theorem of Khler-Einstein metrics on complete Khler manifolds.We use the heat equation method smoothing certain positive (1,1) current in the canonical class.
CHEN BingLong
YAU'S UNIFORMIZATION CONJECTURE FOR MANIFOLDS WITH NON-MAXIMAL VOLUME GROWTH被引量:3
2018年
The well-known Yau's uniformization conjecture states that any complete noncompact Kahler manifold with positive bisectional curvature is bi-holomorphic to the Euclidean space. The conjecture for the case of maximal volume growth has been recently confirmed, by G. Liu in [23]. In the first part, we will give a survey on thc progress. In the second part, we will consider Yau's conjecture for manifolds with non-maximal volume growth. We will show that the finiteness of the first Chern number Cn1 is an essential condition to solve Yau's conjecture by using algebraic embedding method. Moreover, we prove that, under bounded curvature conditions, Cn1 is automatically finite provided that there exists a positive line bundle with finite Chern number. In particular, we obtain a partial answer to Yau's uniformization conjecture on Kahler manifolds with minimal volume growth.
Binglong CHENXiping ZHU
共1页<1>
聚类工具0