In this paper,we prove a general existence theorem of Khler-Einstein metrics on complete Khler manifolds.We use the heat equation method smoothing certain positive (1,1) current in the canonical class.
The well-known Yau's uniformization conjecture states that any complete noncompact Kahler manifold with positive bisectional curvature is bi-holomorphic to the Euclidean space. The conjecture for the case of maximal volume growth has been recently confirmed, by G. Liu in [23]. In the first part, we will give a survey on thc progress. In the second part, we will consider Yau's conjecture for manifolds with non-maximal volume growth. We will show that the finiteness of the first Chern number Cn1 is an essential condition to solve Yau's conjecture by using algebraic embedding method. Moreover, we prove that, under bounded curvature conditions, Cn1 is automatically finite provided that there exists a positive line bundle with finite Chern number. In particular, we obtain a partial answer to Yau's uniformization conjecture on Kahler manifolds with minimal volume growth.