A free boundary problem for the one-dimensional compressible Navier-Stokes equations is investigated. The asymptotic behavior of solutions toward the superposition of contact discontinuity and shock wave is established under some smallness conditions. To do this, we first construct a new viscous contact wave such that the momentum equation is satisfied exactly and then determine the shift of the viscous shock wave. By using them together with an inequality concerning the heat kernel in the half space, we obtain the desired a priori estimates. The proof is based on the elementary energy method by the anti-derivative argument.
In this paper, we study the large time behavior of solutions to the nonisentropic Navier-Stokes equations of general gas, where polytropic gas is included as a special case, with a free boundary. First we construct a viscous contact wave which approximates to the contact discontinuity, which is a basic wave pattern of compressible Euler equation, in finite time as the heat conductivity tends to zero. Then we prove the viscous contact wave is asymptotic stable if the initial perturbations and the strength of the contact wave are small. This generalizes our previous result [6] which is only for polytropic gas.
It is known that the one-dimensional nonlinear heat equation ut = f(u)x1x1,f'(u) > 0,u(±∞,t) = u±,u+ = u_ has a unique self-similar solution u(x1/1+t).In multi-dimensional space,u(x1/1+t) is called a planar diffusion wave.In the first part of the present paper,it is shown that under some smallness conditions,such a planar diffusion wave is nonlinearly stable for the nonlinear heat equation:ut-△f(u) = 0,x ∈ Rn.The optimal time decay rate is obtained.In the second part of this paper,it is further shown that this planar diffusion wave is still nonlinearly stable for the quasilinear wave equation with damping:utt + utt+ △f(u) = 0,x ∈ Rn.The time decay rate is also obtained.The proofs are given by an elementary energy method.
The zero dissipation limit for the one-dimensional Navier-Stokes equations of compressible,isentropic gases in the case that the corresponding Euler equations have rarefaction wave solutions is investigated in this paper.In a paper(Comm.Pure Appl.Math.,46,1993,621-665) by Z.P.Xin,the author constructed a sequence of solutions to one-dimensional Navier-Stokes isentropic equations converging to the rarefaction wave as the viscosity tends to zero.Furthermore,he obtained that the convergence rate is ε 1/4 | ln ε|.In this paper,Xin's convergence rate is improved to ε1/3|lnε|2 by different scaling arguments.The new scaling has various applications in related problems.
In this paper, a compensated compactness framework is established for sonicsubsonic approximate solutions to the n-dimensional (n ≥ 2) Euler equations for steady irrotational flow that may contain stagnation points. This compactness framework holds provided that the approximate solutions are uniformly bounded and satisfy Hloc^-1(Ω) compactness conditions. As illustration, we show the existence of sonic-subsonic weak solution to n-dimensional (n ≥ 2) Euler equations for steady irrotational flow past obstacles or through an infinitely long nozzle. This is the first result concerning the sonic-subsonic limit for n-dimension (n ≥ 3).