This paper focuses on the dilute real symmetric Wigner matrix Mn=1/√n(aij)n×n, whose offdiagonal entries aij (1 ≤ em ≠ j ≤ n) have mean zero and unit variance, Eaij4 =θnα (θ 〉 0) and the fifth moments of aij satisfy a Lindeberg type condition. When the dilute parameter 0 〈 α ≤ 1/3 and the test function satisfies some regular conditions, it proves that the centered linear eigenvalue statistics of Mn obey the central limit theorem.