We deal with the existence of weak solutions of double degenerate quasilinear parabolic inequalities with a Signorini-Dirichlet-Neumann type mixed boundary condition, which may degenerate in certain subset of the boundary or on a segment in the interior of the domain and in time. The main tools in our study are the maximM monotone property of the derivative operator with zero-initial valued conditions and the theory of pseudomonotone perturbations of maximal monotone mappings.