您的位置: 专家智库 > >

国家自然科学基金(904030180)

作品数:1 被引量:0H指数:0
发文基金:国家自然科学基金更多>>
相关领域:理学更多>>

文献类型

  • 1篇中文期刊文章

领域

  • 1篇理学

主题

  • 1篇SPIN
  • 1篇EQUATI...
  • 1篇GROUP
  • 1篇LORENT...
  • 1篇REPRES...
  • 1篇YANG-M...

传媒

  • 1篇Acta M...

年份

  • 1篇2007
1 条 记 录,以下是 1-1
排序方式:
A Representation of the Lorentz Spin Group and Its Application
2007年
For an integer m ≥ 4, we define a set of 2[m/2] × 2[m/2] matrices γj (m), (j = 0, 1,..., m - 1) which satisfy γj (m)γk (m) +γk (m)γj (m) = 2ηjk (m)I[m/2], where (ηjk (m)) 0≤j,k≤m-1 is a diagonal matrix, the first diagonal element of which is 1 and the others are -1, I[m/2] is a 2[m/1] × 2[m/2] identity matrix with [m/2] being the integer part of m/2. For m = 4 and 5, the representation (m) of the Lorentz Spin group is known. For m≥ 6, we prove that (i) when m = 2n, (n ≥ 3), (m) is the group generated by the set of matrices {T|T=1/√ξ((I+k) 0 + 0 I-K) ( U 0 0 U), (ii) when m = 2n + 1 (n≥ 3), (m) is generated by the set of matrices {T|T=1/√ξ(I -k^- k I)U,U∈ (m-1),ξ=1-m-2 ∑k,j=0 ηkja^k a^j〉0, K=i[m-3 ∑j=0 a^j γj(m-2)+a^(m-2) In],K^-=i[m-3∑j=0 a^j γj(m-2)-a^(m-2) In]}
Qi Keng LUKe WU
关键词:REPRESENTATION
共1页<1>
聚类工具0