This paper presents a novel vision based localization algorithm from three-line structure ( TLS) .Two types of TLS are investigated: 1) three parallel lines ( Structure I) ; 2) two parallel lines and one orthogonal line ( Structure II) .From single image of either structure,the camera pose can be uniquely computed for vision localization.Contributions of this paper are as follows: 1 ) both TLS structures can be used as simple and practical landmarks,which are widely available in daily life; 2) the proposed algorithm complements existing localization methods,which usually use complex landmarks,especially in the partial blockage conditions; 3) compared with the general Perspective-3-Lines ( P3L) problem,camera pose can be uniquely computed from either structure.The proposed algorithm has been tested with both simulation and real image data.For a typical simulated indoor condition ( 75 cm-size landmark,less than 7.0 m landmark-to-camera distance,and 0.5-pixel image noises) ,the means of localization errors from Structure I and Structure II are less than 3.0 cm.And the standard deviations are less than 3.0 cm and 1.5 cm,respectively.The algorithm is further validated with two actual image experiments.Within a 7.5 m × 7.5 m indoor situation,the overall relative localization errors from Structure I and Structure II are less than 2.2% and 2.3% ,respectively,with about 6.0 m distance.The results demonstrate that the algorithm works well for practical vision localization.
波达方向(direction of arrival,DOA)估计是利用具有一定空间结构的天线阵元对空间信源的来波方向进行估计。为解决MUSIC算法和ESPRIT算法在智能天线DOA估计中空间谱分辨率和抗噪声性能方面的不足,依据压缩感知理论的贪婪算法思想,将匹配追踪(matching pursuit,MP)算法和子空间追踪(subspace pursuit,SP)算法应用在DOA估计中,即提出2种新的算法MP-DOA和SP-DOA。这2种算法主要包括原子库建立、信号投影、最佳匹配原子筛选及信号特征提取等过程。4种算法的仿真实验与对比分析结果表明,MP-DOA算法在低信噪比情况下较其他3种算法性能更优越,SP-DOA算法在角度分辨率和对信源数的包容方面的性能较其他3种算法优越,也验证了应用压缩感知理论的优越性。
近年来K-SVD字典学习去噪算法因其耗时短、去噪效果好的特点得到广泛关注和应用,但该算法的适用条件为图像的噪声为加性噪声且噪声标准差已知。针对这一情况,先提出一种平滑图像块筛选方法,并将其与奇异值分解(singular value decomposition,SVD)相结合实现对图像的噪声标准差估计;再将得到的噪声估计方法与K-SVD字典学习去噪算法结合起来,提出一种具备噪声估计特性的K-SVD字典学习去噪算法。对多种图像的去噪实验结果表明,与Donoho小波软阈值去噪算法、全变分(total variation,TV)去噪算法相比,该算法不仅能够使去噪后图像的峰值信噪比提升1~3 dB,并且能较好地保留图像的细节信息和边缘特征。