In this article, we prove that any complete finite index hypersurface in the hyperbolic space H4(-1)(H5(-1)) with constant mean curvature H satisfying H2 6634 (H2 114785 respectively) must be compact. Specially, we verify that any complete and stable hypersurface in the hyperbolic space H4(-1) (resp. H5(-1)) with constant mean curvature H satisfying H2 6643 (resp. H2 114785 ) must be compact. It shows that there is no manifold satisfying the conditions of some theorems in [7, 9].
It is shown that any solution to the semilinear problem{u(x,0=)u0(x)〈1,x∈[-1,1] u(±1,t)=0,t∈(0,T), ut=uxx+δ(1-u)^-p(x,t)∈(-1,1) ×(0,T)either touches 1 in finite time or converges smoothly to a steady state as t -~ ~e. Some extensions of this result to higher dimensions are also discussed.