您的位置: 专家智库 > >

国家自然科学基金(40701113)

作品数:3 被引量:29H指数:3
相关作者:晋锐李新车涛更多>>
相关机构:中国科学院更多>>
发文基金:国家自然科学基金中国科学院寒区旱区环境与工程研究所知识创新工程项目中国科学院知识创新工程重要方向项目更多>>
相关领域:天文地球自动化与计算机技术自然科学总论更多>>

文献类型

  • 3篇中文期刊文章

领域

  • 2篇天文地球
  • 1篇自动化与计算...
  • 1篇自然科学总论

主题

  • 3篇SSM/I
  • 2篇亮温
  • 1篇遥感
  • 1篇树算法
  • 1篇同化
  • 1篇土壤
  • 1篇土壤含水量
  • 1篇土壤温度
  • 1篇微波遥感
  • 1篇温度
  • 1篇决策树
  • 1篇决策树算法
  • 1篇含水量
  • 1篇被动微波
  • 1篇被动微波遥感
  • 1篇SOIL
  • 1篇ASSIMI...
  • 1篇DATA
  • 1篇HYDROT...
  • 1篇FROZEN

机构

  • 2篇中国科学院

作者

  • 2篇李新
  • 2篇晋锐
  • 1篇车涛

传媒

  • 1篇中国科学(D...
  • 1篇遥感学报
  • 1篇Scienc...

年份

  • 3篇2009
3 条 记 录,以下是 1-3
排序方式:
Improving the estimation of hydrothermal state variables in the active layer of frozen ground by assimilating in situ observations and SSM/I data被引量:8
2009年
The active layer of frozen ground data assimilation system adopts the SHAW (Simulteneous Heat and Water) model as the model operator. It employs an ensemble kalman filter to fuse state variables predicted by the SHAW model with in situ observation and the SSM/I 19 GHz brightness temperature for the purpose of optimizing model hydrothermal state variables. When there is little water movement in the frozen soil during the winter season, the unfrozen water content depends primarily on soil temperature. Thus, soil temperature is the crucial state variable to be improved. In contrast, soil moisture is heavily influenced by precipitation during the summer season. The simulation accuracy of soil moisture has a strong and direct impact on the soil temperature. In this case, the crucial state variable to be improved is soil moisture. One-dimensional assimilation experiments that have been carried out at AMDO station show that land data assimilation method can improve the estimation of hydrothermal state variables in the soil by fusing model information and observation information. The reasonable model error covariance matrix plays a key role in transferring the optimized surface state information to the deep soil, and it provides improved estimations of whole soil state profiles. After assimilating the 4-cm soil temperature by in situ observation, the soil temperature RMSE (Root Mean Square Error) of each soil layer decreased by 0.96℃ on average relative to the SHAW simulation. After assimilating the 4-cm soil moisture in situ observation, the soil moisture RMSE of each soil layer decreased by 0.020 m3·m-3. When assimilating the SSM/I 19 GHz brightness temperature, the soil temperature RMSE of each soil layer during the winter decreased by 0.76℃, while the soil moisture RMSE of each soil layer during the summer decreased by 0.018 m3·m-3.
JIN RuiLI Xin
关键词:DATAASSIMILATIONFROZENSOILSOIL
SSM/I监测地表冻融状态的决策树算法被引量:18
2009年
基于样本统计分析及冻结和融化地表的辐射/散射特性建立了判别地表冻融状态的决策树,首次联合使用散射指数、37GHz垂直极化亮温及19GHz极化差3个关键指标识别出地表或植被冠层的冻融状态,同时剔除了沙漠和降水的影响。利用国际协同加强观测期(CEOP)在青藏高原地区的土壤温度和湿度观测系统获取的4cm地温数据代表浅层土壤真实冻融状态验证分类结果,其准确性达87%。经分析,约40%和73%的误分分别发生在浅层土壤温度为-0.5—0.5℃和-2.0—2.0℃之间,即冻结点附近;且多发生在冷暖季节过渡时期,即4—5月和9—10月,分别占误分的33%和38%。基于该决策树获得的2002年10月—2003年9月中国全境地表冻结日数图,以中国冻土区划及类型图为参考进行精度评价,其总体分类精度为91.66%,Kappa系数为80.5%,且冻融界线与季节冻土分布南界具有较好的一致性。
晋锐李新车涛
关键词:SSM/I亮温决策树
同化站点观测和SSM/I亮温改善冻土活动层状态变量的模拟精度被引量:5
2009年
以考虑了土壤冻融过程的一维水-热-盐分耦合模型SHAW为冻土活动层数据同化系统的动力学约束框架,通过集合卡尔曼滤波算法同化土壤水分和温度的站点观测数据以及被动微波辐射计SSM/I19GHz亮温观测数据,以改善冻土活动层水热状态变量的估计精度,实现模型模拟和观测信息的融合.冬季活动层冻结,同化的关键变量为土壤温度;而夏季同化的关键变量为土壤水分.通过单点同化试验表明,该同化系统能显著改善土壤表层水分和温度的估计精度;同时,在同化过程中给定合理的模型误差协方差项,可将表层优化后的信息迅速传递给深层土壤,达到改善整个土壤廓线状态变量估计的目的.同化结果表明,相对于SHAW模拟结果,同化4cm土壤温度观测后,各层土壤温度RMSE平均减小0.96℃,而同化4cm土壤水分观测数据后,各层土壤水分RMSE平均减小0.020m3·m?3;同化SSM/I19GHz亮温后,各层土壤温度RMSE平均减小0.76℃,各层土壤水分RMSE平均减小0.018m3·m?3.
晋锐李新
关键词:土壤含水量土壤温度被动微波遥感
共1页<1>
聚类工具0