The authors consider ±(Φ, J)-holomorphic maps from Sasakian manifolds into Koihler manifolds, which can be seen as counterparts of holomorphic maps in Kiihler ge- ometry. It is proved that those maps must be harmonic and basic. Then a Schwarz lemma for those maps is obtained. On the other hand, an invariant in its basic homotopic class is obtained. Moreover, the invariant is just held in the class of basic maps.
In this paper, we investigate the Dirichlet problem for Hermitian-Einstein equation on complex vector bundle over almost Hermitian manifold, and we obtain the unique solution of the Dirichlet problem for Hermitian-Einstein equation.