The persistence barrier of sea surface temperature anomalies (SSTAs) in the North Pacific was investigated and compared with the ENSO spring persistence barrier. The results show that SSTAs in the central western North Pacific (CWNP) have a persistence barrier in summer: the persistence of SSTAs in the CWNP shows a significant decline in summer regardless of the starting month. Mechanisms of the summer persistence barrier in the CWNP are different from those of the spring persistence barrier of SSTAs in the central and eastern equatorial Pacific. The phase locking of SSTAs to the annual cycle does not explain the CWNP summer persistence barrier. Remote ENSO forcing has little linear influence on the CWNP summer persistence barrier, compared with local upper-ocean process and atmospheric forcing in the North Pacific. Starting in wintertime, SSTAs extend down to the deep winter mixed layer then become sequestered beneath the shallow summer mixed layer, which is decoupled from the surface layer. Thus, wintertime SSTAs do not persist through the following summer. Starting in summertime, persistence of summer SSTAs until autumn can be explained by the atmospheric forcing through a positive SSTAs-cloud/radiation feedback mechanism because the shallow summertime mixed layer is decoupled from the temperature anomalies at depth, then the following autumnwinter-spring, SSTAs persist. Thus, summer SSTAs in the CWNP have a long persistence, showing a significant decline in the following summer. In this way, SSTAs in the CWNP show a persistence barrier in summer regardless of the starting month.
Lag correlations of sea surface temperature anomalies (SSTAs), sea surface height anomalies (SSHAs), subsurface temperature anomalies, and surface zonal wind anomalies (SZWAs) produced by the Flexible Global Ocean-Atmosphere-Land System modeh Grid-point Version 2 (FGOALS-g2) are analyzed and com- pared with observations. The insignificant, albeit positive, lag correlations between the SSTAs in the south- eastern tropical Indian Ocean (STIO) in fall and the SSTAs in the central-eastern Pacific cold tongue in the following summer through fall are found to be not in agreement with the observational analysis. The model, however, does reproduce the significant lag correlations between tile SSHAs in the STIO in fall and those in the cold tongue at the one-year time lag in the observations. These, along with the significant lag correlations between the SSTAs in the STIO in fall and the subsurface temperature anomalies in the equatorial Pacific vertical section in the following year, suggest that the Indonesian Throughflow plays an important role in propagating the Indian Ocean anomalies into the equatorial Pacific Ocean. Analyses of the interannual anomalies of the Indonesian Throughflow transport suggest that the FGOALS-g2 climate system simulates, but underestimates, the oceanic channel dynamics between the Indian and Pacific Oceans. FGOALS-g2 is shown to produce lag correlations between the SZWAs over the western equatorial Pacific in fall and the cold tongue SSTAs at the one-year time lag that are too strong to be realistic in comparison with observations. The analyses suggest that the atmospheric bridge over the Indo-Pacific Ocean is overestimated in the FGOALS-g2 coupled climate model.
A hybrid coupled model (HCM) is constructed for El Nifio-Southern Oscillation (ENSO)-related modeling studies over almost the entire Pacific basin.An ocean general circulation model is coupled to a statistical atmospheric model for interannual wind stress anomalies to represent their dominant coupling with sea surface temperatures.In addition,various relevant forcing and feedback processes exist in the region and can affect ENSO in a significant way; their effects are simply represented using historical data and are incorporated into the HCM,including stochastic forcing of atmospheric winds,and feedbacks associated with freshwater flux,ocean biology-induced heating (OBH),and tropical instability waves (TIWs).In addition to its computational efficiency,the advantages of making use of such an HCM enable these related forcing and feedback processes to be represented individually or collectively,allowing their modulating effects on ENSO to be examined in a clean and clear way.In this paper,examples are given to illustrate the ability of the HCM to depict the mean ocean state,the circulation pathways connecting the subtropics and tropics in the western Pacific,and interannual variability associated with ENSO.As satellite data are taken to parameterize processes that are not explicitly represented in the HCM,this work also demonstrates an innovative method of using remotely sensed data for climate modeling.Further model applications related with ENSO modulations by extratropical influences and by various forcings and feedbacks will be presented in Part Ⅱ of this study.