Polychlorinated naphthalenes (PCNs) are dioxin-like environmental contaminants. There is growing concern over the endocrine-disrupting effects of PCNs, but very few studies have investigated the effect of PCNs on the thyroid system. This study used a yeast two-hybrid assay, which included the recombinant human thyroid receptor(TR)-β and reporter genes, to characterize the TRβ-disrupting effects of five individual PCN congeners, five PCN Halowax mixtures, and naphthalene. Their agonist and antagonist effects were studied in the absence and presence of 5×10-7 mol/L 3,3′,5-triiodo-L-thyronine, which induced submaximal β-galactosidase activity. Naphthalene, 1,2,3,4,5,6,7,8-octachloronaphthalene and all of the Halowax mixtures (Halowax 1000, 1001, 1013, 1014 and 1099) showed no agonist or antagonist activity on TRβ at the concentrations tested (up to 10-2 g/L). The lighter PCN congeners, namely 1-chloronaphthalene, 2-chloronaphthalene, 1,4-dichloronaphthalene and 1,2,3,4-tetrachloronaphthalene showed no agonist activity but showed significant antagonist activity on TRβ. The 20% relative inhibitory concentrations of these PCNs were less than 9.13 × 10-3 g/L. Thus, bioaccumulation of these lighter PCN congeners may disrupt the thyroid hormone system and inhibit TR-mediated cellular responses. Studies in the future should investigate the possible associations between the presence PCNs and adverse health outcomes.
LI NaMA MeiWANG ZiJianSENTHIL KUMARAN Satyanarayanan
Decabromodiphenyl ether (BDE209) is the primary component in a commonly used flame retardant. Previous studies had proved that BDE209 itself was not toxic, while its metabolites including debrominated diphenyl ethers (De-BDEs) and methoxylated brominated diphenyl ethers (MeO-BDEs) posed a potential threat to organisms. Many studies had indicated that BDE209 could metabolize quickly in mammals, but lacking in the basic data about the metabolism of BDE209 in fish. In the present study, two replicate treatment groups of rainbow trout (Oncorhynchus rnykiss) were exposed to BDE209 via a single intraperitoneal injection approximately 100 and 500 ng/g, respectively. Muscle, liver and blood samples were collected to analyze the specific metabolites on day 1 and day 28 post injection. The highest concentration of BDE209 was detected in muscle tissues, from 796.1 ng/g wet weight (day 1) to 687.1 ng/g wet weight (day 28) in high dose group, suggesting that BDE209 could accumulate slightly in muscle tissues. However, BDE209 was not detected in the blood for all treatments. Most congeners of De-BDEs were found in muscle and liver tissues, with the highest concentration in the liver. The main De-BDEs were nona-, octa-, hepta- and penta-De-BDEs. A total of seven MeO-BDE metabolites were observed among different fish tissues. Blood had the highest contribution of the MeO-BDE metabolites. Each MeO-BDE congener increased over the 28 days. These results in contrast to other studies suggested possible species-specific differences in metabolic abilities.
Chenglian Feng,Yiping Xu,Yue He,Qian Luo,Jinmiao Zha,Zijian Wang State Key Laboratory of Environmental Aquatic Chemistry,Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences,Beijing 100085,China.