In this paper, we investigate the model checking problem for a general linear model with nonignorable missing covariates. We show that, without any parametric model assumption for the response probability, the least squares method yields consistent estimators for the linear model even if only the complete data are applied. This makes it feasible to propose two testing procedures for the corresponding model checking problem: a score type lack-of-fit test and a test based on the empirical process. The asymptotic properties of the test statistics are investigated. Both tests are shown to have asymptotic power 1 for local alternatives converging to the null at the rate n-r, 0 ≤ r 〈 1/2. Simulation results show that both tests perform satisfactorily.
We consider the statistical inference for right-censored data when censoring indicators are missing but nonignorable, and propose an adjusted imputation product-limit estimator. The proposed estimator is shown to be consistent and converges to a Gaussian process. Furthermore, we develop an empirical processbased testing method to check the MAR (missing at random) mechanism, and establish asymptotic properties for the proposed test statistic. To determine the critical value of the test, a consistent model-based bootstrap method is suggested. We conduct simulation studies to evaluate the numerical performance of the proposed method and compare it with existing methods. We also analyze a real data set from a breast cancer study for an illustration.