In this paper, Lie group classification to the N-th-order nonlinear evolution equation Ut : UNx + F(x, t, u, ux, . . . , U(N-1)x)is performed. It is shown that there are three, nine, forty-four and sixty-one inequivalent equations admitting one-, two-, three- and four-dimensionM solvable Lie algebras, respectively. We also prove that there are no semisimple Lie group 50(3) as the symmetry group of the equation, and only two realizations oral(2, R) are admitted by the equation. The resulting invariant equations contain both the well-known equations and a variety of new ones.