Let A be a d x d real expansive matrix. An A-dilation Parseval frame wavelet is a function φ E n2 (Rd), such that the set {|det A|n/2φ(Ant -l) :n ∈ Z, l∈ Zd} forms a Parseval frame for L2 (Rd). A measurable function f is called an A-dilation Parseval frame wavelet multiplier if the inverse Fourier transform of fφ is an A-dilation Parseval frame wavelet whenever φ is an A-dilation Parseval frame wavelet, where φ denotes the Fourier transform of φ. In this paper, the authors completely characterize all A-dilation Parseval frame wavelet multipliers for any integral expansive matrix A with | det(A)|= 2. As an application, the path-connectivity of the set of all A-dilation Parseval frame wavelets with a frame MRA in L2(Rd) is discussed.
We study the open question on determination of jumps for functions raised by Shi and Hu in 2009. An affirmative answer is given for the case that spline-wavelet series are used to approximate the functions.