Conventional PCR methods combined with linkage analysis based on short tandem repeats (STRs) or Karyomapping with single nucleotide polymorphism (SNP) arrays, have been applied to preimplantation genetic diagnosis (PGD) for spinal muscular atrophy (SMA), an autosome recessive disorder. However, it has limitations in SMA diagnosis by Karyomapping, and these methods are unable to distinguish wild- type embryos with carriers effectively. Mutated allele revealed by sequencing with aneuploidy and linkage analyses (MARSALA) is a new method allowing embryo selection by a one-step next-generation sequencing (NGS) procedure, which has been applied in PGD for both autosome dominant and X-linked diseases in our group previously. In this study, we carried out PGD based on MARSALA for two carrier families with SMA affected children. As a result, one of the couples has given birth to a healthy baby free of mutations in SMA-causing gene. It is the first time that MARSALA was applied to PGD for SMA, and we can distinguish the embryos with heterozygous deletion (carriers) from the wild-type (normal) ones accurately through this NGS-based method. In addition, direct mutation detection allows us to identify the affected embryos (homozygous deletion), which can be regarded as probands for linkage analysis, in case that the affected family member is absent, In the future, the NGS-based MARSALA method is expected to be used in PGD for all monogenetic disorders with known pathogenic gene mutation.
Background: L-proline is a natural, nontoxic cryoprotectant that helps cells and tissues to tolerate freezing in a variety of plants and animals. The use of L-proline in mammalian oocyte cryopreservation is rare. In this study, we explored the cryobiological characteristics of L-proline and evaluated its protective effect in mouse oocyte cryopreservation. Methods: The freezing property of L-proline was detected by Raman spectroscopy and osmometer. Mature oocytes obtained from 8-week-old B6D2F 1 mice were vitrified in a solution consisting various concentration of L-proline with a reduced proportion ofdimethyl sulfoxide (DMSO) and ethylene glycol (EG), comparing with the control group (15% DMSO and 15% EG without L-proline). The survival rate, 5-methylcytosine (5-mC) expression, fertilization rate, two-cell rate, and blastocyst rate in vitro were assessed by immunofluorescence and in vitro fertilization. Data were analyzed by Chi-square test. Results: L-proline can penetrate the oocyte membrane within 1 min. The osmotic pressure of 2.00 mol/L L-proline mixture is similar to that of the control group. The survival rate of the postthawed oocyte in 2.00 mol/L L-proline combining 7.5% DMSO and 10% EG is significantly higher than that of the control group. There is no difference of 5-mC expression between the L-proline combination groups and control. The fertilization rate, two-cell rate, and blastocyst rate in vitro from oocyte vitrified in 2.00 mol/L L-proline combining 7.5% DMSO and 10% EG solution are similar to that of control. Conclusions: It indicated that an appropriate concentration of L-proline can improve the cryopreservation efficiency of mouse oocytes with low concentrations of DMSO and EG, which may be applicable to human oocyte vitrification.
Proper reprogramming of parental DNA methylomes is essential for mammalian embryonic development. However, it is unknown whether abnormal methylome reprogramming occurs and is associated with the failure of embryonic development. Here we analyzed the DNA methylomes of 57 blastocysts and 29 trophectoderm samples with different morphological grades during assisted reproductive technology (ART) practices. Our data reveal that the global methylation levels of high-quality blastocysts are similar (0.30 ± 0.02, mean ± SD), while the methylation levels of low-quality blastocysts are divergent and away from those of high-quality blastocysts. The proportion of blastocysts with a methylation level falling within the range of 0.30± 0.02 in different grades correlates with the live birth rate for that grade. Moreover, abnormal methylated regions are associated with the failure of embryonic development. Furthermore, we can use the methylation data of cells biopsied from trophectoderm to predict the blastocyst methylation level as well as to detect the aneuploidy of the blastocysts. Our data indicate that global abnormal methylome reprogramming often occurs in human embryos, and suggest that DNA methylome is a potential biomarker in blastocyst selection in ART.
Preimplantation genetic diagnosis(PGD)gives couples who have a high risk of transmitting genetic disorders to their baby the chance to have a healthy offspring through embryo genetic analysis and selection.Preimplantation genetic screening(PGS)is an effective method to select euploid embryos that may prevent repeated implantation failure or miscarriage.However,how and to whom PGS should be provided is a controversial topic.The first successful case of PGD of a human being was reported in 1990,and there have been tremendous improvements in this technology since then.Both embryo biopsy and genetic technologies have been improved dramatically,which increase the accuracy and expand the indications of PGD/PGS.
YAN LiYingWEI YuanHUANG JinZHU XiaoHuiSHI XiaoDanXIA XiYAN JieLU CuiLingLIAN YingLI RongLIU PingQIAO Jie
Background: Luteal support is a key to patients undergoing in vitro fertilization and embryo transfer (IVF-ET) with gonadotropin-releasing hormone (GnRH)-antagonist protocol. This study aimed to compare the effect between vaginal progesterone (VP) and intramuscular progesterone (IMP) with GnRH-antagonist protocol alter IVF-ET. Methods: A total of 1760 patients (18 years ≤ age ≤35 years) undergoing IVF-ET with GnRH-antagonist protocol were studied retrospectively between September 2014 and August 2015 in Peking University Third Hospital. In the patients, 1341 patients received VP (VP group) and 419 patients received IMP (IMP group) as luteal support. We compared clinical outcomes between these two groups. The primary objective of the study was the live birth rate. Measurement data between the two groups were conducted using independent samples t-test. The variables in line with non-normal distribution were expressed as median (p25 and p75) and were compared using nonparametric Mann. Whitney U-test. Results: Live birth rate in VP group was 38.55%, significantly higher than that in the IMP group, which was 30.79% (x^2 = 8.287, P= 0.004). The clinical intrauterine pregnancy rate and implantation rate in VP group were also significantly higher than those in the IMP group (clinical intrauterine pregnancy rate 47.35% vs. 41.29%, x^2= 4.727, P = 0.030: implantation rate 30.99% vs. 25.26%, x^2=14.546, P 〈 0.001). Any statistically significant differences in ectopic pregnancy and abortion rates between two groups were not observed. Conclusion: Luteal support with VP had better clinical outcomes for young women undergoing IVF-ET with GnRH-antagonist protocol.