Ab initio MP2 and DFT studies on the tautomers of cytosine and the related hydrated tautomers have been carried out. The ground-state structures of four tautomers of cytosine and related transition states were fully optimized. The vibrational frequency analysis was performed on all the optimized structures. Detailed intrinsic reaction coordinate (IRC) calculations were carded out to guarantee the optimized transition-state structures being connected to the related tautomers. We obtained the relative stability order for the tautomers of cytosine and the related hydrated tautomers. In the isolated and hydrated condition, the bond types of C(2)--O(7) and C(4)--N(8) greatly affect the stability of the cytosine tautomers. Moreover, we have explored the influence of the water molecules on the intramolecular proton transfer between the keto and enol forms of the cytosine tautomers. The first water molecule obviously decreases the isomerization activation energy for the monohydrated cytosine tautomers. It is shown that the isomerization energy barrier changes only a little when the second and third water molecules are added in the reaction loop. The solvent effects have an obvious influence on the proton-transfer barrier of the isolated cytosine. However, the solvent effects seem to be insignificant for the isomerization energy barriers of the monohydrated, dihydrated and trihydrated cytosine. The water molecule in these complexes can be looked on as the explicit water. Therefore, the explicit water model may be more credible to explore the intramolecular proton transfer, in comparison with the PCM which is the implicit water model.
Accepted theories predict that substitution reactions are controlled by the electronic nature of the attacked site for electrophilic aromatic substitution. Here it is shown that in addition the bond strength of the broken bond may also influence the regioselectivity of the substitution reaction, and that the Dpb is a good indicator of the strength of a chemical bond. The Dpb denotes the depth of the potential acting on one electron in a molecule at the bond center (bc). In this letter, the values of Dpb along the C-H and N-H bonds have been investigated, and it is demonstrated that for aromatic compounds, the regioselectivity of the electrophilic substitution can well be rationalized in terms of Dpb values.