With the concept of super-atom, first principles calculations propose a new type of super stable cage clusters AlnH3n that are much more energetic stable than the well established clusters, AlnHn+2. In the new clusters, the aluminum core-frame acts as a super-atom with n vertexes and 2n A1-A1 edges, which allow to adsorb n hydrogen atoms at the top-site and 2n at the bridge-site. Using Al12H36 as the basic unit, stable chain structures, (Al12H36)m, have been constructed following the same connection mechanism as for (A1H3)n linear polymeric structures. Apart from high hydrogen percentage per molecule, calculations have shown that these new clusters possess large heat of formation values and their combustion heat is about 4.8 times of the methane, making them a promising high energy density material.
Ke-yan LianYuan-fei JiangDe-hou FeiWei FengMing-xing JinDa-jun DingYi Luo
This paper reports that a one-colour fs pump probe measurement has been carried out for studying photoionization/photodissociation of cyclohexanone (C6H10O) in intense laser field. Two of the fragments from eyclohexanone, C2H+ and C3H3+, are studied under 800 nm laser pump-probe and the results obtained show similar time evolutions. It proposes a feasible model for analysing the experimental observations of the one-colour fs pump-probe measurement. The results demonstrate that as an intermediate product, the excited molecular parent ions play a very important role in photionization/photodissociation processes in intense laser field.
Solvent effects on 2,4-dinitrotoluene(2,4-DNT) molecule in different solvents(toluene, ethanol, and water) were studied via DFT PCM method at B3LYP/6-311+G(d,p) level. The influences of these solvents on the molecular structure, vibrational spectra, charge distribution, and dipole moment were studied as well. The results show that PCM computations are successful in describing the vibrational spectra of 2,4-DNT molecules in these solutions and the solvent effects on the low frequency vibrational spectra are weak.