The influencing factors in adsorption such as adsorption time, pulp concentration, bacterial concentration, pH as well as ionic strength were investigated to explore the relationship among them and bacterial adsorption. The adsorption was a rapid process for bacterial adhesion to chalcopyrite. The extent of adsorption increased with increasing initial bacterial concentration and pulp concentration. The optimal pH for Acidithiobacillusferrooxidans adsorption onto chalcopyrite surfaces was in the range of pH 1-3. The increase of ionic strength led to decrease in bacterial adsorption, which can be well explained by electric double layer theory. The adsorption behavior appeared to be controlled by both hydrophobic and electrostatic interactions at the interface of bacteria and mineral,
AThe wastewater source of 4# tailing pond in Dexing copper mine consists of alkaline flotation pulp and acid mine drainage (AMD) from the nearby opencast mine. Therefore, the heavy metals in tailing ore are very likely to be released due to acidification from AMD. The leaching behaviors ofZn, Cu, Fe and Mn in mine tailings from Dexing copper mine were investigated by a series of laboratory batch experiments. The effectcs ofpH, temperature, particle size and contact time on the leachability of such heavy metals were examined. It was evident that Zn, Cu, Fe and Mn were major heavy metals in the tailings while gangue minerals like quartz were major constituents in examined tailings. The tailing dissolution reaction was controlled by the acid, whose kinetics could be expressed according to the heterogeneous reaction models and explained by a shrinking core model with the surface chemical reaction as the rate-controlling step. The leachability of all metals examined depended on pH and contact time. The batch studies indicated that the maximum leaching ratios ofZn, Cu, Fe and Mn at pH 2.0 were 5.4%, 5.8%, l 1.1% and 34.1%, respectively. The dissolubility of all metals examined was positively correlated to the temperatures. The particle size would not change dissolution tendency of those heavy metals, but decrease the concentrations of leached heavy metals.