We study the dynamics of commuting rational maps with coefficients in Cp. By lifting the dynamics from P1(Cp) to Berkovich projective space P1 Berk, we prove that two nonlinear commuting maps have the same Berkovich Julia set and the same canonical measure. As a consequence, two nonlinear commuting maps with coefficient in Cp have the same classical Julia set. We also prove that they have the same pre-periodic Berkovich Fatou components.
In this paper,we prove a general existence theorem of Khler-Einstein metrics on complete Khler manifolds.We use the heat equation method smoothing certain positive (1,1) current in the canonical class.
t The authors consider the problem of conformally deforming a metric such that the k-curvature defined by an elementary symmetric function of the eigenvalues of the Bakry-Emery Ricci tensor on a compact manifold with boundary to a prescribed function. A consequence of our main result is that there exists a complete metric such that the Monge-Amp^re type equation with respect to its Bakry-Emery Ricci tensor is solvable, provided that the initial Bakry-Emery Ricci tensor belongs to a negative convex cone.
On an almost Hermitian manifold, there are two Hermitian scalar curvatures associated with a canonical Hermitian connection. In this paper, two explicit formulas on these two scalar curvatures are obtained in terms of the Riemannian scalar curvature, norms of the components of the covariant derivative of the fundamental 2-form with respect to the Levi-Civita connection, and the codifferential of the Lee form. Then we use them to get characterization results of the K?hler metric, the balanced metric, the locally conformal K?hler metric or the k-Gauduchon metric. As corollaries, we show partial results related to a problem given by Lejmi and Upmeier(2020) and a conjecture by Angella et al.(2018).
In this paper, we investigate the Dirichlet problem for Hermitian-Einstein equation on complex vector bundle over almost Hermitian manifold, and we obtain the unique solution of the Dirichlet problem for Hermitian-Einstein equation.