您的位置: 专家智库 > >

国家自然科学基金(61273365)

作品数:7 被引量:26H指数:3
相关作者:王小捷谭咏梅杨雪王序文孙月萍更多>>
相关机构:北京邮电大学更多>>
发文基金:国家自然科学基金国家高技术研究发展计划高等学校学科创新引智计划更多>>
相关领域:电子电信自动化与计算机技术更多>>

文献类型

  • 3篇中文期刊文章

领域

  • 2篇自动化与计算...
  • 1篇电子电信

主题

  • 1篇信息熵
  • 1篇意图识别
  • 1篇函数估计
  • 1篇POMDP
  • 1篇QUESTI...
  • 1篇RETRIE...
  • 1篇SUPERV...
  • 1篇VD
  • 1篇ANSWER
  • 1篇DESCRI...
  • 1篇DNN
  • 1篇ENSEMB...
  • 1篇不确定性
  • 1篇COMMUN...
  • 1篇VERB
  • 1篇SUBJEC...

机构

  • 1篇北京邮电大学

作者

  • 1篇王小捷

传媒

  • 2篇The Jo...
  • 1篇中兴通讯技术

年份

  • 1篇2019
  • 1篇2015
  • 1篇2014
7 条 记 录,以下是 1-3
排序方式:
Video description with subject, verb and object supervision
2019年
Video description aims to generate descriptive natural language for videos.Inspired from the deep neural network(DNN) used in the machine translation,the video description(VD) task applies the convolutional neural network(CNN) to extracting video features and the long short-term memory(LSTM) to generating descriptions.However,some models generate incorrect words and syntax.The reason may because that the previous models only apply LSTM to generate sentences,which learn insufficient linguistic information.In order to solve this problem,an end-to-end DNN model incorporated subject,verb and object(SVO) supervision is proposed.Experimental results on a publicly available dataset,i.e.Youtube2 Text,indicate that our model gets a 58.4% consensus-based image description evaluation(CIDEr) value.It outperforms the mean pool and video description with first feed(VD-FF) models,demonstrating the effectiveness of SVO supervision.
Wang YueLiu JinlaiWang Xiaojie
关键词:VDDNN
基于信息熵的POMDP模型观测函数估计
2015年
部分可观测马尔可夫决策过程(POMDP)广泛应用于建模决策任务。模型中的观测矩阵主要用来建模环境的不确定性,通常很难从训练数据中直接获取,需要引入额外的信息进行估计。通过引入信息熵来修正模型中的观测矩阵,修正后的观测矩阵更能反映环境的不确定性。模拟环境下的实验表明,引入信息熵进行修正估计的观测矩阵有效提高了POMDP模型的性能,而在基于POMDP模型的对话系统中,修正的估计提高了系统的决策准确度。
钟可立王小捷
关键词:不确定性意图识别信息熵
Ensemble similarity measure for community-based question answer
2014年
Community-based question answer(CQA) makes a figure network in development of social network. Similar question retrieval is one of the most important tasks in CQA. Most of the previous works on similar question retrieval were given with the underlying assumption that answers are similar if their questions are similar, but no work was done by modeling similarity measure with the constraint of the assumption. A new method of modeling similarity measure is proposed by constraining the measure with the assumption, and employing ensemble learning to get a comprehensive measure which integrates different context features for similarity measuring, including lexical, syntactic, semantic and latent semantic. Experiments indicate that the integrated model could get a relatively high performance consistence between question set and answer set. Models with better consistency tend to get a better precision according to answers.
SUN Yue-pingWANG Xiao-jieWANG Xu-wenJIANG Shao-weiLIU Yong-bin
共1页<1>
聚类工具0