Fossil pollen records from 45 sites across China were evaluated and synthesized to document vegetation and climate change during Marine Isotope Stage 3(MIS 3)at 60–27 ka and to understand the large-scale controls.During MIS3, vegetation type was dominantly forest in eastern China, forest steppe/meadow in the north and Tibetan Plateau, and steppe desert in northwestern arid China. We developed a semi-quantitative vegetation index to reflect change in plant abundance(by inferring the general climate conditions), with a vegetation score from 1to 3 based on the different vegetation types inferred from pollen data at individual sites at intervals of 2,000 years.The reconstructed vegetation index shows higher values during MIS 3, especially during the period 53–40 ka, than at the Last Glacial Maximum. Our results also suggest that climate on the basis of vegetation change was cooler and drier during MIS 3 than during the Holocene optimum;however, MIS 3 vegetation was probably similar to modern vegetation. The close relationship between vegetation change, insolation and Asian summer monsoon strength suggests that climate variations, probably in both temperature and precipitation, are the primary drivers of regional vegetation change. Additional well-dated, high-resolution palaeoclimate records from many locations across China will be needed to understand the vegetation change and climate forcings on millennial and centennial scales within MIS 3.
Yan ZhaoZicheng YuUlrike HerzschuhBao YangHui ZhaoKeyan FangHuan LiQuan Li
The modern pollen assemblages of surface lake sediments and topsoils in northwestern China were studied to understand the relationship of modem pollen data with contemporary vegetation and climate, and the differences between the pollen assem- blages of surface lake sediments and topsoils. The results show that Chenopodiaceae and Artemisia are dominant elements in the pollen assemblages of northwestern China. Additionally, Ephedra, Cyperaceae, Asteraceae, Poaceae, Picea, Pinus, and Betula are also important pollen taxa. Both pollen assemblages and principal component analysis indicate that pollen data from surface lake sediments and topsoils can be used to differentiate the main vegetation types of this region (desert, steppe, mead- ow and forest). However, differences exist between modern pollen assemblages of the two types of sediments due to the dif- ferent relevant source areas of pollen and degrees of pollen preservation. For example, the larger relevant source area of sur- face lake sediment results in a higher abundance of Betula in pollen assemblage from surface lake sediment, whereas the ten- dency to disintegrate thin-walled pollen types in topsoil leads to a higher proportion of resistant pollen, such as Asteraceae. Linear regression analysis indicates that the Artemisia/Chenopodiaceae (A/C) ratio in pollen assemblages of surface lake sedi- ments can be used to indicate humidity changes in the study area. However, the A/C ratio in topsoils should be used carefully. Our results suggest that pollen data from surface lake sediments would be better references for interpreting the fossil pollen assemblages of lake cores or lacustrine profiles.