您的位置: 专家智库 > >

国家自然科学基金(s10421101)

作品数:3 被引量:5H指数:2
发文基金:国家自然科学基金更多>>
相关领域:理学文化科学更多>>

文献类型

  • 3篇中文期刊文章

领域

  • 3篇理学
  • 1篇文化科学

主题

  • 2篇REGULA...
  • 2篇KOC
  • 1篇NAVIER
  • 1篇NAVIER...
  • 1篇NAVIER...
  • 1篇NSF
  • 1篇STOKES
  • 1篇DEDICA...
  • 1篇EQUATI...
  • 1篇FLUID_...
  • 1篇INEQUA...
  • 1篇LITTLE...
  • 1篇RU
  • 1篇DENSIT...
  • 1篇INHOMO...
  • 1篇INCOMP...

传媒

  • 3篇Scienc...

年份

  • 1篇2015
  • 2篇2012
3 条 记 录,以下是 1-3
排序方式:
Regularity of the Koch-Tataru solutions to Navier-Stokes system
2012年
In this paper,we shall prove that the Koch-Tataru solution u to the incompressible Navier-Stokes equations in Rd satisfies the decay estimates involving some borderline Besov norms with d 3.Moreover,u has a unique trajectory which is Hlder continuous with respect to the space variables.
Zhang PingZhang Ting
关键词:NAVIER-STOKESEQUATIONSLITTLEWOOD-PALEY
Regularity of the Koch-Tataru solutions to Navier-Stokes system Dedicated to the NSFC-CNRS Chinese-French summer institute on fluid mechanics in 2010被引量:2
2012年
In this paper, we shall prove that the Koch-Tataru solution u to the incompressible Navier-Stokes equations in Rd satisfies the decay estimates involving some borderline Besov norms with d ≥ 3. Moreover, u has a unique trajectory which is HSlder continuous with respect to the space variables.
ZHANG PingZHANG Ting
Global well-posedness of 3-D density-dependent Navier-Stokes system with variable viscosity被引量:3
2015年
Given initial data(ρ0, u0) satisfying 0 < m ρ0≤ M, ρ0- 1 ∈ L2∩˙W1,r(R3) and u0 ∈˙H-2δ∩ H1(R3) for δ∈ ]1/4, 1/2[ and r ∈ ]6, 3/1- 2δ[, we prove that: there exists a small positive constant ε1,which depends on the norm of the initial data, so that the 3-D incompressible inhomogeneous Navier-Stokes system with variable viscosity has a unique global strong solution(ρ, u) whenever‖ u0‖ L2 ‖▽u0 ‖L2 ≤ε1 and ‖μ(ρ0)- 1‖ L∞≤ε0 for some uniform small constant ε0. Furthermore, with smoother initial data and viscosity coefficient, we can prove the propagation of the regularities for such strong solution.
ABIDI HammadiZHANG Ping
共1页<1>
聚类工具0