Using the Flexible Global Ocean-Atmosphere-Land System model (FGOALS) version g1.11, a group of seasonal hindcasting experiments were carried out. In order to investigate the potential predictability of sea surface temperature (SST), singular value decomposition (SVD) analyses were applied to extract dominant coupled modes between observed and predicated SST from the hindcasting experiments in this study. The fields discussed are sea surface temperature anomalies over the tropical Pacific basin (20~0S-20~0N, 120~0E- 80~0W), respectively starting in four seasons from 1982 to 2005. On the basis of SVD analysis, the simulated pattern was replaced with the corresponding observed pattern to reconstruct SST anomaly fields to improve the ability of the simulation. The predictive skill, anomaly correlation coefficients (ACC), after systematic error correction using the first five modes was regarded as potential predictability. Results showed that: 1) the statistical postprocessing approach was effective for systematic error correction; 2) model error sources mainly arose from mode 2 extracted from the SVD analysis-that is, during the transition phase of ENSO, the model encountered the spring predictability barrier; and 3) potential predictability (upper limits of predictability) could be high over most of the tropical Pacific basin, including the tropical western Pacific and an extra 10-degrees region of the mid and eastern Pacific.
A group of seasonal hindcast experiments are conducted using a coupled model known as the Flexible Global Ocean-Atmosphere-Land System Modelgamil1.11 (FGOALS-g1.11) developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG).Two steps are included in our ElNi o-Southern Oscillation (ENSO) hindcast experiments.The first step is to integrate the coupled GCM with the Sea Surface Temperature (SST) strongly nudged towards the observation from 1971 to 2006.The second step is to remove the SST nudging term.The authors carried out a one-year hindcast by adopting the initial values from SST nudging experiments from the first step on January 1st,April 1st,July 1st,and October 1st from 1982 to 2005.In the SST nudging experiment,the model can reproduce the observed equatorial thermocline anomalies and zonal wind stress anomalies in the Pacific,which demonstrates that the SST nudging approach can provide realistic atmospheric and oceanic initial conditions for seasonal prediction experiments.The model also demonstrates a high Anomaly Correlation Coefficient (ACC) score for SST in most of the tropical Pacific,Atlantic Ocean,and some Indian Ocean regions with a 3-month lead.Compared with the persistence ACC score,this model shows much higher ACC scores for the Ni o-3.4 index for a 9-month lead.
YAN LiYU Yong-QiangWANG BinLI Li-JuanWANG Pan-Xing