The main modes of interannal variabilities of thermocline and sea surface wind stress in the tropical Pacific and their interactions are investigated,which show the following results.(1) The thermocline anomalies in the tropical Pacific have a zonal dipole pattern with 160°W as its axis and a meridional seesaw pattern with 6-8°N as its transverse axis.The meridional oscillation has a phase lag of about 90° to the zonal oscillation,both oscillations get together to form the El Ni?o/La Ni?a cycle,which be-haves as a mixed layer water oscillates anticlockwise within the tropical Pacific basin between equator and 12°N.(2) There are two main patterns of wind stress anomalies in the tropical Pacific,of which the first component caused by trade wind anomaly is characterized by the zonal wind stress anomalies and its corresponding divergences field in the equatorial Pacific,and the abnormal cross-equatorial flow wind stress and its corresponding divergence field,which has a sign opposite to that of the equatorial region,in the off-equator of the tropical North Pacific,and the second component represents the wind stress anomalies and corresponding divergences caused by the ITCZ anomaly.(3) The trade winds anomaly plays a decisive role in the strength and phase transition of the ENSO cycle,which results in the sea level tilting,provides an initial potential energy to the mixed layer water oscillation,and causes the opposite thermocline displacement between the west side and east side of the equator and also between the equator and 12°N of the North Pacific basin,therefore determines the amplitude and route for ENSO cycle.The ITCZ anomaly has some effects on the phase transition.(4) The thermal anomaly of the tropical western Pacific causes the wind stress anomaly and extends eastward along the equator accompanied with the mixed layer water oscillation in the equatorial Pacific,which causes the trade winds anomaly and produces the anomalous wind stress and the corresponding divergence in favor to conduce the oscillatio
ZHAO YongPing1,CHEN YongLi1,WANG Fan1 & WU AiMing2 1 Institute of Oceanology,Chinese Academy of Sciences,Qingdao 266071,China