Reduction in vegetation cover caused by human activities has a great impact on soil temperature. It is important to assess how soil temperature responds to reduction of vegetation height and density. In this paper we first report the trends of mean annual soil surface and air temperatures recorded at the meteorological stations near the Ecological Research Station for Grassland Farming (ERSGF) from 1961 to 2007, then we setup an experiment using reed (Phragmites australis) stalks with different heights and densities to simulate effects of different vegetation height and density on soil and air temperatures. The warming rates of the mean annual soil and air temperatures were 0.043 and 0.041C a 1 , respectively. Changes of soil temperature were characterized by both increased mean annual maximum and minimum soil temperatures. At the experimental site, mean daily temperature, mean daily maximum soil and air temperatures increased significantly. In contrast, mean daily minimum soil temperature increased significantly while mean daily minimum air temperature decreased significantly as the height and density of reed stalks reduced during the experimental period. Mean diurnal soil temperature ranges were smaller than mean diurnal air temperature ranges. These results highlight that the importance of vegetation cover on soil and air temperatures.
SONG YanTaoZHOU DaoWeiZHANG HongXiangLI GuangDiJIN YingHuaLI Qiang
In order to restore a degraded alkaline grassland, the local government implemented a large restoration project using fences in Changling county, Jilin province, China, in 2000. Grazing was excluded from the protected area, whereas the grazed area was continuously grazed at 8.5 dry sheep equivalent(DSE)/hm2. In the current research, soil and plant samples were taken from grazed and fenced areas to examine changes in vegetation and soil properties in 2005, 2006 and 2008. Results showed that vegetation characteristics and soil properties improved significantly in the fenced area compared with the grazed area. In the protected area the vegetation cover, height and above- and belowground biomass increased significantly. Soil pH, electrical conductivity and bulk density decreased significantly, but soil organic carbon and total nitrogen concentration increased greatly in the protected area. By comparing the vegetation and soil characteristics with pre-degraded grassland, we found that vegetation can recover 6 years after fencing, and soil pH can be restored 8 years after fencing. However, the restoration of soil organic carbon, total nitrogen and total phosphorus concentrations needed 16, 30 and 19 years, respectively. It is recommended that the stocking rate should be reduced to 1/3 of the current carrying capacity, or that a grazing regime of 1-year of grazing followed by a 2-year rest is adopted to sustain the current status of vegetation and soil resources. However, if N fertilizer is applied, the rest period could be shortened, depending on the rate of application.
Qiang LIDaoWei ZHOUYingHua JINMinLing WANGYanTao SONGGuangDi LI