The authors investigate the relationship between bias in simulated sea surface temperature (SST) in the equatorial eastern Pacific cold tongue during the boreal spring as simulated by an oceanic general circulation model (OGCM) and minimal wind mixing (MWM) at the surface. The cold bias of simulated SST is the greatest during the boreal spring, at approximately 3℃. A sensi- tivity experiment reducing MWM by one order of magnitude greatly alleviates cold biases, especially in March-April. The decrease in bias is primarily due to weakened vertical mixing, which preserves heat in the uppermost layer and results in warmer simulated SST. The reduction in vertical mixing also leads to a weak westward current in the upper layer, which further contributes to SST warming. These findings imply that there are large uncertainties about simple model parameters such as MWM at the oceanic surface.
By analyzing the climatologically averaged wind stress during 2000-2007, it is found that the easterly wind stress in the northern tropical Pacific Ocean from Quick Scatterometer (QSCAT) data was stronger than those from Tropical Atmosphere Ocean (TAO) data and from National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis I. As a result, the Intertropical Convergence Zone (ITCZ) in the Pacific Ocean is more southward in the QSCAT data than in the NCEP/NCAR data. Relative to the NCEP wind led to negative anomaly of wind stress curl north of the southern shift of the ITCZ in the QSCAT data a latitude of 6°N. The negative anomaly results in downward Ekman pumping in the central Pacific. The excessive local strong easterly wind also contributes to the downward Ekman pumping. This downward Ekman pumping suppresses the thermocline ridge, reduces the meridional thermocline slope and weakens the North Equatorial Countereurrent (NECC). These effects were confirmed by numerical experiments using two independent ocean general circulation models (OGCMs). Furthermore, the excessive equatorial easterly wind stress was also found to contribute to the weaker NECC in the OGCMs. A comparison between the simulations and observation data indicates that the stronger zonal wind stress and its southern shift of QSCAT data in the ITCZ region yield the maximum strength of the simulated NECC only 33% of the magnitude derived from observation data and even led to a "missing" NECC in the western Pacific.
In this study,a quasi-global(excluding the Arctic Ocean) eddy-resolving ocean general circulation model(OGCM) is established based on the latest version of the LASG/IAP Climate system Ocean Model(LICOM2.0).The horizontal resolution and vertical resolution are increased to 1/10° and 55 layers,respectively.Forced by the surface fluxes from the reanalysis and observed data,the model has been integrated for approximately 20 model years(20 a).During the last 8 a,the model is driven by daily mean wind stresses from QuikSCAT and heat fluxes from reanalysis data from 2000 to 2007.The basic performance of the OGCM is analyzed using the last 8 a simulation output.Compared with the simulation of the coarse-resolution OGCM,the eddy-resolving OGCM not only better simulates the spatial-temporal features of mesoscale eddies and the paths and positions of western boundary currents but also reproduces the large meander of the Kuroshio Current and its interannual variability.Another aspect,namely,the complex structures of equatorial Pacific currents and currents in the coastal ocean of China,are better captured due to the increased horizontal and vertical resolution.
This study assesses the historical climate trends of surface air temperature(SAT), their spatial distributions, and the hindcast skills for SAT during 1901– 2000 from 24 Coupled Model Intercomparison Project Phase 5(CMIP5) models. For the global averaged SAT, most of the models(17/24) effectively captured the increasing trends(0.64°C/century for the ensemble mean) as the observed values(- 0.6°C/century) during the period of 1901–2000, particularly during a rapid warming period of 1970–2000 with the small model spread. In addition, most of the models(22/24) showed high hindcast skills(the correlation coefficient, R 〉 0.8). For the spatial pattern of SAT, the models better simulated the relatively larger warming at the middle-to-high latitudes in the Northern Hemisphere than that in the Southern Hemisphere and the greater warming on the land than that in the ocean between 40°S and 40°N. The simulations underestimated the warming along some ocean boundaries but overestimated warming in the Arctic Ocean. Most of the coupled models were able to reproduce the large-scale features of SAT trends in most regions excluding Antarctica, some parts of the Pacific Ocean, the North Atlantic Ocean near Greenland, the southwestern Indian Ocean, and the Arctic Ocean. The outgoing longwave radiation(OLR) and incoming shortwave radiation(ISR) at the top of the atmosphere(TOA) and the downward longwave(LW) radiation and sensible heat flux at the surface had positive contributions to the increasing trends in most of the models.
This study presents the spatial and temporal structures of the decadal variability of the Pacific from an extended control run of a coupled global climate model (GCM).The GCM used was version-g2.0 of the Flexible Global Ocean Atmosphere Land System (FGOALS-g2.0) developed at LASG/IAP.The GCM FGOALS-g2.0 re-produces similar spatial-temporal structures of sea surface temperature (SST) as observed in the Pacific decadal os-cillation (PDO) with a significant period of approximately 14 years.Correspondingly,the PDO signals were closely related to the decadal change both in the upper-ocean temperature anomalies and in the atmospheric circulation.The present results suggest that warm SST anomalies along the equator relax the trade winds,causing the SSTs to warm even more in the eastern equatorial Pacific,which is a positive feedback.Meanwhile,warm SST anomalies along the equator force characteristic off-equa-torial wind stress curl anomalies,inducing much more poleward transport of heat,which is a negative feedback.The upper-ocean meridional heat transport,which is asso-ciated with the PDO phase transition,links the equatorial to the off-equatorial Pacific Ocean,acting as a major mechanism responsible for the tropical Pacific decadal variations.Therefore,the positive and negative feedbacks working together eventually result in the decadal oscilla-tion in the Pacific.
The observed meridional overtuming circula- tion (MOC) and meridional heat transport (MHT) estimated from the Rapid Climate Change/Meridional Circu- lation and Heat Flux Array (RAPID/MOCHA) at 26.5°N are used to evaluate the volume and heat transport in the eddy-resolving model LASG/IAP Climate system Ocean Model (LICOM). The authors find that the Florida Cur- rent transport and upper mid-ocean transport of the model are underestimated against the observations. The simulated variability of MOC and MHT show a high correlation with the observations, exceeding 0.6. Both the simulated and observed MOC and MHT show a significant seasonal variability. According to the power spectrum analysis, LICOM can represent the mesoscale eddy characteristic of the MOC similar to the observation. The model shows a high correlation of 0.58 for the internal upper mid-ocean transport (MO) and a density difference between the western and eastern boundaries, as noted in previous studies.