In this paper, we examine the performance of the 26-level version of the SAMIL/LASG GCM (R42/L26) in simulating the seasonal cycle and perpetual winter mean stratospheric circulation as well as its variability by comparing them with the NCEP/NCAR reanalysis. The results show that the model is capable of repro- ducing many key features of the climatology and seasonal variation of the stratospheric circulation despite that the model's mean polar vortex is stronger and more zonally symmetric compared to the observation. ~rther diagnosis of the results from a perpetual-January-run of the SAMIL/LASG GCM indicates that the dominant winter-season oscillation mode in the model's stratosphere exhibits a similar inter-seasonal timescale with similar spatial patterns as those inferred from the NCEP/NCAR reanalysis. In particular, the simulated polar vortex oscillation mode exhibits a dominant inter-seasonal timescale of about 120 days, and is accompanied with the simultaneous poleward and downward propagation of temperature anomalies in the stratosphere and the equatorward propagation of temperature anomalies in the troposphere. More encouragingly, the 26-layer version of the SAMIL/LASG GCM is able to produce three strong Stratospheric Sudden Warming events during the 1825 days of perpetual-January integration, with the polar westerly jet completely reversed for a few weeks without imposing any prescribed anomalous forcing at the lower boundary.
Physical processes associated with onset of the 1998 Asian summer monsoon were examined in detail using multi-source datasets. We demonstrated that strong ocean-atmosphere-land interaction in the northern Indian Ocean and tropical Asian area during spring is a fundamental factor that induces the genesis and development of a monsoon onset vortex over the Bay of Bengal (BOB), with the vortex in turn triggering onset of the Asian summer monsoon. In spring, strong surface sensible heat- ing over India and the Indochina Peninsula is transferred to the atmosphere, forming prominent in situ cyclonic circulation, with anticyclonic circulations over the Arabian Sea and northern BOB where the ocean receives abundant solar radiation. The corresponding surface winds along the North Indian Ocean coastal areas cause the ocean to produce the in situ offshore cur- rents and upwelling, resulting in sea surface temperature (SST) cooling. With precipitation on the Indochina Peninsula in- creasing from late April to early May, the offshore current disappears in the eastern BOB or develops into an onshore current, leading to SST increasing. A southwest-northeast oriented spring BOB warm pool with SST 〉31℃forms in a band from the southeastern Arabian Sea to the eastern BOB. In early May, the Somali cross-equatorial flow forms due to the meridional SST gradient between the two hemispheres, and surface sensible heat over the African land surface. The Somali flow overlaps in phase with the anticyclone over the northern Arabian Sea in the course of its inertial fluctuation along the equator. The con- vergent cold northerlies on the eastern side of the anticyclone cause the westerly in the inertial trough to increase rapidly, so that enhanced sensible heat is released from the sea surface into the atmosphere. The cyclonic vorticity forced by such sensible heating is superimposed on the inertial trough, leading to its further increase in vorticity strength. Since atmospheric inertial motion is destroyed, the flow deviates from t