The stability of the first-order and second-order solution moments for a Harrison-type predator-prey model with parametric Gaussian white noise is analyzed in this paper. The moment equations of the system solution are obtained under Ito interpretations. The delay-independent stable condition of the first-order moment is identical to that of the deterministic delayed system, and the delay-independent stable condition of the second-order moment depends on the noise intensities. The corresponding critical time delays are determined once the stabilities of moments lose. Further, when the time delays are greater than the critical time delays, the system solution becomes unstable with the increase of noise intensities. Finally, some numerical simulations are given to verify the theoretical results.
In this paper, multi-valued responses and dynamic properties of a nonlinear vibro-impact system with a unilateral nonzero offset barrier are studied. Based on the Krylov-Bogoliubov averaging method and Zhuravlev non-smooth trans- formation, the frequency response, stability conditions, and the equation of backbone curve are derived. Results show that in some conditions impact system may have two or four steady-state solutions, which are interesting and not mentioned for a vibro-impact system with the existence of frequency island phenomena. Then, the classification of the steady-state solutions is discussed, and it is shown that the nontrivial steady-state solutions may lose stability by saddle node bifurcation and Hopf bifurcation. Furthermore, a criterion for avoiding the jump phenomenon is derived and verified. Lastly, it is found that the distance between the system's static equilibrium position and the barrier can lead to jump phenomenon under hardening type of nonlinearity stiffness.
In this paper, the principal resonance response of a stochastically driven elastic impact (El) system with time-delayed cubic velocity feedback is investigated. Firstly, based on the method of multiple scales, the steady-state response and its dynamic stability are analyzed in deterministic and stochastic cases, respectively. It is shown that for the case of the multi- valued response with the frequency island phenomenon, only the smallest amplitude of the steady-state response is stable under a certain time delay, which is different from the case of the traditional frequency response. Then, a design criterion is proposed to suppress the jump phenomenon, which is induced by the saddle-node bifurcation. The effects of the feedback parameters on the steady-state responses, as well as the size, shape, and location of stability regions are studied. Results show that the system responses and the stability boundaries are highly dependent on these parameters. Furthermore, with the purpose of suppressing the amplitude peak and governing the resonance stability, appropriate feedback gain and time delay are derived.
The diffusion behavior driven by bounded noise under the influence of a coupled harmonic potential is investigated in a two-dimensional coupled-damped model. With the help of the Laplace analysis we obtain exact descriptions for a particle’s two-time dynamics which is subjected to a coupled harmonic potential and a coupled damping. The time lag is used to describe the velocity autocorrelation function and mean square displacement of the diffusing particle. The diffusion behavior for the time lag is also discussed with respect to the coupled items and the amplitude of bounded noise.
This work develops a fully discrete implicit-explicit finite element scheme for a parabolicordinary system with a nonlinear reaction term which is known as the FitzHugh-Nagumo model from physiology.The first-order backward Euler discretization for the time derivative,and an implicit-explicit discretization for the nonlinear reaction term are employed for the model,with a simple linearization technique used to make the process of solving equations more efficient.The stability and convergence of the fully discrete implicit-explicit finite element method are proved,which shows that the FitzHugh-Nagumo model is accurately solved and the trajectory of potential transmission is obtained.The numerical results are also reported to verify the convergence results and the st ability of the proposed method.
Li CaiYe SunFeifei JingYiqiang LiXiaoqin ShenYufeng Nie