The combined effects of Ltvy noise and immune delay on the extinction behavior in a tumor growth model are explored, The extinction probability of tumor with certain density is measured by exit probability. The expression of the exit probability is obtained using the Taylor expansion and the infinitesimal generator theory. Based on numerical calculations, it is found that the immune delay facilitates tumor extinction when the stability index α〈 1, but inhibits tumor extinction when the stability index α 〉 1. Moreover, larger stability index and smaller noise intensity are in favor of the extinction for tumor with low density. While for tumor with high density, the stability index and the noise intensity should be reduced to promote tumor extinction.
In this paper, the principal resonance response of a stochastically driven elastic impact (El) system with time-delayed cubic velocity feedback is investigated. Firstly, based on the method of multiple scales, the steady-state response and its dynamic stability are analyzed in deterministic and stochastic cases, respectively. It is shown that for the case of the multi- valued response with the frequency island phenomenon, only the smallest amplitude of the steady-state response is stable under a certain time delay, which is different from the case of the traditional frequency response. Then, a design criterion is proposed to suppress the jump phenomenon, which is induced by the saddle-node bifurcation. The effects of the feedback parameters on the steady-state responses, as well as the size, shape, and location of stability regions are studied. Results show that the system responses and the stability boundaries are highly dependent on these parameters. Furthermore, with the purpose of suppressing the amplitude peak and governing the resonance stability, appropriate feedback gain and time delay are derived.
利用广义胞映射方法,研究了加性和乘性泊松白噪声联合作用下SD振子(smooth and discontinuous oscillator)的随机响应问题.基于图分析算法,获得确定SD振子的吸引子、吸引域、域边界、鞍和不变流形等全局特性.基于矩阵分析算法,计算了SD振子在泊松白噪声激励下的瞬态和稳态响应.结果表明:随机响应的概率密度函数演化方向和确定情况下的不稳定流形形状之间存在密切联系.蒙特卡罗模拟结果表明,所使用的方法是有效且准确的.
The stochastic response of a noisy system with non-negative restoring force is investigated. The generalized cell mapping (GCM) method compute the transient and stationary probability density functions (PDFs) real-power is used to Combined with the global properties of the noise-free system, the evolutionary process of the tran- sient PDFs is revealed. The results show that stochastic P-bifurcation occurs when the system parameter varies in the response analysis and the stationary PDF evolves from bimodal to unimodal along the unstable manifold during the bifurcation.
In this paper,we consider the response analysis of a Duffing-Rayleigh system with fractional derivative under Gaussian white noise excitation.A stochastic averaging procedure for this system is developed by using the generalized harmonic functions.First,the system state is approximated by a diffusive Markov process.Then,the stationary probability densities are derived from the averaged Ito stochastic differential equation of the system.The accuracy of the analytical results is validated by the results from the Monte Carlo simulation of the original system.Moreover,the effects of different system parameters and noise intensity on the response of the system are also discussed.
This paper mainly investigates dynamics behavior of HIV (human immunodeficiency virus) infectious disease model with switching parameters, and combined bounded noise and Gaussian white noise. This model is different from existing HIV models. Based on stochastic Ito lemma and Razumikhin-type approach, some threshold conditions are established to guarantee the disease eradication or persistence. Results show that the smaller amplitude of bounded noise and R0 〈 1 can cause the disease to die out; the disease becomes persistent if R0 〉 1. Moreover, it is found that larger noise intensity suppresses the prevalence of the disease even if R0 〉 1. Some numerical examples are given to verify the obtained results.