The surface plasmonic effect and scattering effect of gold nanorods(AuNRs) on the performance of bulk heterojunction photovoltaic devices based on the blend of polythiophene and fullerene are investigated.AuNRs enhance the excitation since the plasmonic effect increases the electric field,mainly in the area near the interface between the active layer and AuNRs.The results show that the incident photo-to-electron conversion efficiency(IPCE) obviously increases for the device with a layer of gold nanorods,resulting from the plasmonic effect of AuNRs in the range of 500-670 nm and the scattering effect in the range of 370-410 nm.The power conversion efficiency(PCE) is increased by 7.6% due to the near field effect of the localized surface plasmons(LSP) of AuNRs and the scattering effect.The short circuit current density is also increased by 9.1% owing to the introduction of AuNRs.However,AuNRs can cause a little deterioration in open circuit voltage.
In this paper,the pentacene-based organic field-effect transistors(OFETs)with poly(methyl methacrylate)(PMMA)as gate dielectrics were fabricated,and the effects of gate dielectric thickness and semiconductor thickness on the device performance were investigated.The optimal PMMA thickness is in the range of 350–400 nm to sustain a considerable current density and stable performance.The device performance depends on the thicknesses of the active layer non-monotonically,which can be explained by the morphology of the pentacene film and the position of the conducting channel in the active layer.The device with a pentacene thickness of 50 nm shows the best performance,which has a maximum hole mobility of 1.12 cm2/V·s.In addition,the introduction of a thin layer of tris-(8-hydroxyquinolinato)aluminum(Alq3)to the OFETs as a light-emitting material greatly decreases the device performance.